版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽次也可能没有抽到一等奖C.抽次奖必有一次抽到一等奖D.抽了次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖2.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=3.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个4.方程是关于x的一元二次方程,则m的值是()A. B.C. D.不存在5.已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点()A.D点 B.E点 C.F点 D.D点或F点6.的面积为2,边的长为,边上的高为,则与的变化规律用图象表示大致是()A. B.C. D.7.如图,在中,,,垂足为点,如果,,那么的长是()A.4 B.6 C. D.8.如图,分别是的边上的点,且,相交于点,若,则的值为()A. B. C. D.9.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A. B. C.10 D.810.若,则的值等于()A. B. C. D.11.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°12.如图,在△OAB中,∠AOB=55°,将△OAB在平面内绕点O顺时针旋转到△OA′B′的位置,使得BB′∥AO,则旋转角的度数为()A.125° B.70° C.55° D.15°二、填空题(每题4分,共24分)13.二次函数的图像开口方向向上,则______0.(用“=、>、<”填空)14.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.15.如图,在正方形ABCD中,对角线AC、BD交于点O,E是BC的中点,DE交AC于点F,则tan∠BDE=______.16.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.17.如图,,请补充—个条件:___________,使(只写一个答案即可).18.二次函数的最大值是__________.三、解答题(共78分)19.(8分)如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.20.(8分)已知关于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一个根为﹣1,求k的值;(2)若此一元二次方程有实数根,求k的取值范围.21.(8分)已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.22.(10分)如图,在中,,是的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与交于点F,延长BA到点G,使得,连接FG.备用图(1)求证:FG是的切线;(2)若的半径为4.①当,求AD的长度;②当是直角三角形时,求的面积.23.(10分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.24.(10分)如图,在中,是边上的一点,若,求证:.25.(12分)大学生小李和同学一起自主创业开办了一家公司,公司对经营的盈亏情况在每月的最后一天结算一次.在1-12月份中,该公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系.(1)求y与x函数关系式.(2)该公司从哪个月开始“扭亏为盈”(当月盈利)?直接写出9月份一个月内所获得的利润.(3)在前12个月中,哪个月该公司所获得利润最大?最大利润为多少?26.我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:1.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A.“抽到一等奖的概率为”,抽一次也可能抽到一等奖,故错误;B.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故正确;C.“抽到一等奖的概率为”,抽10次也可能抽不到一等奖,故错误;D.“抽到一等奖的概率为”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.2、C【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【详解】BADCAE,A,B,D都可判定,选项C中不是夹这两个角的边,所以不相似.故选C.【点睛】考查相似三角形的判断方法,掌握相似三角形常用的判定方法是解题的关键.3、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.4、B【分析】根据一元二次方程的定义进行求解即可.【详解】由题知:,解得,∴故选:B.【点睛】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键.5、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点.【详解】解:∵线段AB=60,AD=13,DE=17,EF=7,∴BD=60-13=47,AE=BE=30,AF=37,∴BD:AB=47:60≈0.783,AF:AB=37:60=0.617,∴点F最接近线段AB的黄金分割点.故选:C.【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.6、A【分析】根据三角形面积公式得出与的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得∴∵∴与的变化规律用图象表示大致是故答案为:A.【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.7、C【分析】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【详解】∵∠ACB=90°,
∴∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠A+∠ACD=90°,
∴∠A=∠BCD,又∠ADC=∠CDB,
∴△ADC∽△CDB,
∴,,
∴,即,
解得,CD=6,
∴,
解得,BD=4,
∴BC=,
故选:C.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8、C【分析】根据题意可证明,再利用相似三角形的性质,相似三角形面积的比等于相似比的平方,即可得出对应边的比值.【详解】解:∵∴∴根据相似三角形面积的比等于相似比的平方,可知对应边的比为.故选:C.【点睛】本题考查的知识点是相似三角形的性质,主要有①相似三角形周长的比等于相似比;②相似三角形面积的比等于相似比的平方;③相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.9、A【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【点睛】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.10、B【分析】将整理成,即可求解.【详解】解:∵,∴,
故选:B.【点睛】本题考查分式的化简求值,掌握分式的运算法则是解题的关键.11、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.12、B【分析】据两直线平行,内错角相等可得,根据旋转的性质可得,然后利用等腰三角形两底角相等可得,即可得到旋转角的度数.【详解】,,又,中,,旋转角的度数为.故选:.【点睛】本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.二、填空题(每题4分,共24分)13、>【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>1.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a与抛物线的关系是解题的关键,图像开口方向向上,>1;图像开口方向向下,<1.14、【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案为:【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.15、【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:=2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中点,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD的长度,是解题的关键.16、或.【解析】由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角.故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形.因此,本题需要按以下两种情况分别求解.(1)当∠ONM=90°时,则DN⊥BC.过点E作EF⊥BC,垂足为F.(如图)∵在Rt△ABC中,∠A=90°,AB=AC,∴∠C=45°,∵BC=20,∴在Rt△ABC中,,∵DE是△ABC的中位线,∴,∴在Rt△CFE中,,.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12.∵EF=5,MF=12,∴在Rt△MFE中,,∵DE是△ABC的中位线,BC=20,∴,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴,∴在Rt△ODE中,.(2)当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,,∴在Rt△MFE中,,∵∠DEO=∠EMF,∴,∵DE=10,∴在Rt△DOE中,.综上所述,DO的长是或.故本题应填写:或.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.17、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).【分析】根据相似三角形的判定方法,已知一组角相等则再添加一组相等的角或夹该角的两个边对应成比例即可推出两三角形相似.【详解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.故答案为:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE(填一个即可).【点睛】本题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.18、1【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值1.故答案为1.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.三、解答题(共78分)19、(1)4;(2)2【分析】(1)设AD=x,根据切线长定理得到AF=AD,BE=BD,CE=CF,根据关系式列得方程解答即可;(2)连接OD、OE、OF、OA、OB、OC,将△ABC分为三个三角形:△AOB、△BOC、△AOC,再用面积法求得半径即可.【详解】解:(1)设,分别切的三边、、于点、、,,,,,,,,即,得,的长为.(2)如图,连接OD、OE、OF、OA、OB、OC,则OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF=2,∵,,,∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠B是直角,∴△ABC的面积=,∴,∴OD=2,即的半径长为2.【点睛】此题考查圆的性质,切线长定理,利用面积法求得圆的半径,是一道圆的综合题.20、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判别式是非负数,且二次项系数不等于2.【详解】解:(2)将x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有实数根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范围是k≤5且k≠2.21、(1)50°,25°;(2)见解析【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【详解】(1)解:连接OD.∵,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∵∠ADC=∠AOC=50°,∴∠A=∠ADO=∠ADC=25°,故答案为50°,25°.(2)证明:∵△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A=∠C=∠ADO=∠CDO,∴∠ADC=2∠DAB.【点睛】本题考查的是圆的综合,难度中等,运用到了圆中的基本性质以及全等三角形的相关知识需要熟练掌握.22、(1)见解析;(2)①,②当时,;当时,.【分析】(1)连接AF,由圆周角定理的推论可知,根据等腰三角形的性质及圆周角定理的推论可证,,从而可得,然后根据切线的判定方法解答即可;(2)①连接CF,根据“SSS”证明,由全等三角形及等腰三角形的性质可得,进而可证,由平行线分线段成比例定理可证,可求,然后由相交弦定理求解即可;②分两种情况求解即可,(i)当时,(ii)当时.【详解】(1)连接AF,∵BF为的直径,∴,,∴,∵,∴,∵,,∴,∴,即.又∵OF为半径,∴FG是的切线.(2)①连接CF,则,∵AB=AC,OB=OC,OA=OA,∴,∴,∴,∴,∴.∵半径是4,,∴,,∴,即,又由相交弦定理可得:,∴,即,∴(舍负);(2)②∵为直角三角形,不可能等于.∴(i)当时,则,由于,∴,,∴,∴,,∴;(ii)当时,∵,∴是等腰直角三角形,∴,延长AO交BC于点M,∵AB=AC,∴弧AB=弧AC,∴,∴,∴,∴.【点睛】本题考查了圆周角定理的推论,切线的判定,垂径定理,全等三角形的判定与性质,解直角三角形,平行线分线段成比例定理,三角形的面积公式,熟练掌握圆的有关定理以及分类讨论的思想是解答本题的关键.23、(1)随机(2)【解析】试题分析:(1)直接利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学品安全与公共卫生管理研究考核试卷
- 服装行业中的供应商关系管理考核试卷
- 印刷电商平台的发展与应用考核试卷
- 焙烤食品制造市场趋势预测分析考核试卷
- 新媒体时代对服饰品牌传播的影响考核试卷
- 疾病预防与控制管理信息系统
- 玻璃纤维增强塑料模具制造技术研究考核试卷
- 广播电视接收设备的环保要求考核试卷
- 焙烤食品市场营销策略分析考核试卷
- 建筑装饰与室内设计的造型设计考核试卷
- 书法知识基础理论单选题100道及答案解析
- 2024年中国两轮电动车社区充电行业研究报告 -头豹
- 建筑工地突发事件处理预案
- 医学教程 胆囊癌诊治课件
- DB32∕T 1712-2011 水利工程铸铁闸门设计制造安装验收规范
- 校服评标方法及打分表
- 如何做好机关办公楼物业管理工作
- 疝环充填式无张力修补的手术要点
- 完整版中建八局施工分包与劳务用工管理办法
- 印刷机操作规程
- 苏教版二年级上册7的乘法口诀课件(经典实用)
评论
0/150
提交评论