版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC中,DE∥BC,则下列等式中不成立的是()A. B. C. D.2.若的半径为3,且点到的圆的距离是5,则点在()A.内 B.上 C.外 D.都有可能3.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得4.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A.50° B.55° C.65° D.70°5.函数在同一直角坐标系内的图象大致是()A. B. C. D.6.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.7.已知△ABC∽△A1B1C1,若△ABC与△A1B1C1的相似比为3:2,则△ABC与△A1B1C1的周长之比是()A.2:3 B.9:4 C.3:2 D.4:98.若点、、都在反比例函数的图象上,并且,则下列各式中正确的是()A. B. C. D.9.下列事件是必然事件的是()A.打开电视播放建国70周年国庆阅兵式B.任意翻开初中数学书一页,内容是实数练习C.去领奖的三位同学中,其中有两位性别相同D.食用保健品后长生不老10.已知3x=4y,则=()A. B. C. D.以上都不对二、填空题(每小题3分,共24分)11.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.12.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.13.如图已知二次函数y1=x2+c与一次函数y2=x+c的图象如图所示,则当y1<y2时x的取值范围_____.14.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.15.已知二次函数y=2(x-h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是______.16.四边形ABCD是☉O的内接四边形,,则的度数为____________.17.圆锥的侧面展开的面积是12πcm2,母线长为4cm,则圆锥的底面半径为_________cm.18.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.三、解答题(共66分)19.(10分)已知抛物线的解析式是y=x1﹣(k+1)x+1k﹣1.(1)求证:此抛物线与x轴必有两个不同的交点;(1)若抛物线与直线y=x+k1﹣1的一个交点在y轴上,求该二次函数的顶点坐标.20.(6分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.(1)小明所求作的直线DE是线段AB的;(2)联结AD,AD=7,sin∠DAC=17,BC=9,求AC21.(6分)平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为,,点D是经过点B,C的抛物线的顶点.(1)求抛物线的解析式;(2)点E是(1)中抛物线对称轴上一动点,求当△EAB的周长最小时点E的坐标;(3)平移抛物线,使抛物线的顶点始终在直线CD上移动,若平移后的抛物线与射线BD只有一个公共点,直接写出平移后抛物线顶点的横坐标的值或取值范围.22.(8分)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为,且满足,求实数m的值。23.(8分)如图,为线段的中点,与交于点,,且交于,交于.(1)证明:.(2)连结,如果,,,求的长.24.(8分)如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(1)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B1C1,在网格中画出旋转后的△A1B1C1.25.(10分)为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?26.(10分)2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据两直线平行,对应线段成比例即可解答.【详解】∵DE∥BC,∴△ADE∽△ABC,=,∴,∴选项A,C,D成立,故选:B.【点睛】本题考查平行线分线段成比例的知识,解题的关键是熟练掌握平行线分线段成比例定理.2、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系,设点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵点到圆心的距离5,大于圆的半径3,
∴点在圆外.故选C.【点睛】判断点与圆的位置关系,也就是比较点与圆心的距离和半径的大小关系.3、C【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.4、B【解析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.5、C【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.6、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.7、C【分析】直接利用相似三角形的性质求解.【详解】解:∵△ABC与△A1B1C1的相似比为3:1,∴△ABC与△A1B1C1的周长之比3:1.故选:C.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.8、B【分析】根据反比例函数的图象特征即可得.【详解】反比例函数的图象特征:(1)当时,y的取值为正值;当时,y的取值为负值;(2)在每个象限内,y随x的增大而增大由特征(1)得:,则最大由特征(2)得:综上,故选:B.【点睛】本题考查了反比例函数的图象特征,掌握理解反比例函数的图象特征是解题关键.9、C【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】A.打开电视播放建国70周年国庆阅兵式是随机事件,故不符合题意;B.任意翻开初中数学书一页,内容是实数练习是随机事件,故不符合题意;C.去领奖的三位同学中,其中有两位性别相同是必然事件,符合题意;D.食用保健品后长生不老是不可能事件,故不符合题意;故选C.【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.10、A【分析】根据3x=4y得出x=y,再代入要求的式子进行计算即可.【详解】∵3x=4y,∴x=y,∴==;故选:A.【点睛】此题考查了比例的性质,熟练掌握比例的性质即两内项之积等于两外项之积是解题的关键.二、填空题(每小题3分,共24分)11、1.【详解】解:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案为1.点睛:同一时刻,物体的高度与影长的比相等.12、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.
B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).13、0<x<1.【解析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1<y2时x的取值范围.【详解】解:由题意可得:x2+c=x+c,解得:x1=0,x2=1,则当y1<y2时x的取值范围:0<x<1.故答案为0<x<1.【点睛】此题主要考查了二次函数与一次函数,正确得出两函数的交点横坐标是解题关键.14、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【点睛】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.15、h≤3【解析】试题解析:二次函数的对称轴为:当时,随的增大而增大,对称轴与直线重合或者位于直线的左侧.即:故答案为:点睛:本题考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.当时,随的增大而增大,可知对称轴与直线重合或者位于直线的左侧.根据对称轴为,即可求出的取值范围.16、130°【分析】根据圆内接四边形的对角互补,得∠ABC=180°-∠D=130°.【详解】解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠D=50°,∴∠ABC=180°-∠D=130°.故答案为:130°.【点睛】本题考查了圆内接四边形的性质,圆内接四边形对角互补.17、1【分析】由题意根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:设底面半径为rcm,12π=πr×4,解得r=1.故答案为:1.【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥侧面积的计算公式.18、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.三、解答题(共66分)19、(1)此抛物线与x轴必有两个不同的交点;(1)(,﹣).【分析】(1)由△=[-(k+1)]1-4×1×(1k-1)=k1-4k+11=(k-1)1+8>0可得答案;
(1)先根据抛物线与直线y=x+k1-1的一个交点在y轴上得出1k-1=k1-1,据此求得k的值,再代入函数解析式,配方成顶点式,从而得出答案.【详解】(1)∵△=[﹣(k+1)]1﹣4×1×(1k﹣1)=k1﹣4k+11=(k﹣1)1+8>0,∴此抛物线与x轴必有两个不同的交点;(1)∵抛物线与直线y=x+k1﹣1的一个交点在y轴上,∴1k﹣1=k1﹣1,解得k=1,则抛物线解析式为y=x1﹣3x=(x﹣)1﹣,所以该二次函数的顶点坐标为(,﹣).【点睛】本题主要考查的是抛物线与x轴的交点,解题的关键是掌握二次函数y=ax1+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax1+bx+c=0根之间的关系及熟练求二次函数的顶点式.20、(1)线段AB的垂直平分线(或中垂线);(2)AC=53.【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=17,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=DFAD∴DF=1,在Rt△ADF中,AF=72在Rt△CDF中,CF=22∴AC=AF+CF=43【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.21、(1);(2);(3)或【分析】(1)根据题意可得出点B的坐标,将点B、C的坐标分别代入二次函数解析式,求出b、c的值即可.(2)在对称轴上取一点E,连接EC、EB、EA,要使得EAB的周长最小,即要使EB+EA的值最小,即要使EA+EC的值最小,当点C、E、A三点共线时,EA+EC最小,求出直线AC的解析式,最后求出直线AC与对称轴的交点坐标即可.(3)求出直线CD以及射线BD的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B时,将点B的坐标代入二次函数解析式,求出m的值,写出m的范围即可;②当抛物线与射线恰好只有一个公共点H时,将抛物线解析式与射线解析式联立可得关于x的一元二次方程,要使平移后的抛物线与射线BD只有一个公共点,即要使一元二次方程有两个相等的实数根,即,列式求出m的值即可.【详解】(1)矩形OABC,OC=AB,A(2,0),C(0,3),OA=2,OC=3,B(2,3),将点B,C的坐标分别代入二次函数解析式,,,抛物线解析式为:.(2)如图,在对称轴上取一点E,连接EC、EB、EA,当点C、E、A三点共线时,EA+EC最小,即EAB的周长最小,设直线解析式为:y=kx+b,将点A、C的坐标代入可得:,解得:,一次函数解析式为:.=,D(1,4),令x=1,y==.E(1,).(3)设直线CD解析式为:y=kx+b,C(0,3),D(1,4),,解得,直线CD解析式为:y=x+3,同理求出射线BD的解析式为:y=-x+5(x≤2),设平移后的顶点坐标为(m,m+3),则抛物线解析式为:y=-(x-m)2+m+3,①如图,当抛物线经过点B时,-(2-m)2+m+3=3,解得m=1或4,当1<m≤4时,平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H时,将抛物线解析式与射线解析式联立可得:-(x-m)2+m+3=-x+5,即x2-(2m+1)x+m2-m+2=0,要使平移后的抛物线与射线BD只有一个公共点,即要使一元二次方程有两个相等的实数根,,解得.综上所述,或时,平移后的抛物线与射线BD只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.22、(1);(1)1【分析】(1)根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出结论;(1)利用根与系数的关系可得出x1+x1=1m+3,x1•x1=m1+1,结合x11+x11=31+x1x1即可得出关于m的一元二次方程,解之即可得出m的值.【详解】解:(1)∵方程x1-(1m+3)x+m1+1=0有实数根,∴△=[-(1m+3)]1-4(m1+1)=11m+1≥0,解得:.(1)∵方程x1-(1m+3)x+m1+1=0的两个根分别为x1、x1,∴x1+x1=1m+3,x1•x1=m1+1,∵x11+x11=31+x1x1,∴(x1+x1)1-1x1•x1=31+x1x1,即m1+11m-18=0,解得:m1=1,m1=-14(舍去),∴实数m的值为1.【点睛】本题考查了根与系数的关系以及根的判别式,熟练掌握当一元二次方程有实数根时根的判别式△≥0是解题的关键.23、(1)见解析;(2)【分析】(1)由,可证∠AFM=∠BMG,从而可证;(2)当时,可得且,再根据可求BG,从而可求CF,CG,进而可求答案.【详解】(1)证明:∵∴,又∵∴.解:(2)∵,∴且∵为的中点,∴又∵,∴∴∴,∴【点睛】本题考查的是相似三角形的判定与性质和勾股定理,熟练掌握相似三角形的相关知识与勾股定理是解题的关键.24、(1)见解析;(1)见解析.【分析】图形见详解.【详解】解:(1)如图,△A1B1C1为所作;(1)如图,△A1B1C1为所作.【点睛】本题考查了图形的平移和旋转,属于简单题,熟悉旋转和平移的概念是解题关键.25、(1);(2)该公可若想获得10万元的年利润,此设备的销售单价应是3万元.【解析】分析:(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶叶供应商合同范例
- 外债借款合同范本探讨
- 个人信用分期付款借款合同
- 实验室化学品购买合同
- 土方分包工作合同范本
- 换热机组招标合同范本
- 别墅购销合同书模板
- 高效投资顾问合同
- 钢筋工程劳务分包合同
- 学生改正不良习惯
- 《汤姆·索亚历险记》汤姆·索亚刷墙的精彩片段市赛获奖
- 武汉大学2023年824法学基础B考研真题(回忆版)
- 你比划-我来猜(适合小学生)课件
- 《我国二手车市场的现状及前景【论文】4600字》
- 新概念英语第二册单词表(打印版)
- 学生篮球考核标准
- 未来社区综合解决方案:打造社区全生活链服务构建未来社区全业态
- 账号租赁合同
- 抗震支架施工方法
- 《红楼梦》作品简介名著导读 国学经典 PPT模板
- 四年级上册科学教学设计-14.电路暗箱 苏教版
评论
0/150
提交评论