2023届吉林省长春市第二实验学校八年级数学第一学期期末学业水平测试模拟试题含解析_第1页
2023届吉林省长春市第二实验学校八年级数学第一学期期末学业水平测试模拟试题含解析_第2页
2023届吉林省长春市第二实验学校八年级数学第一学期期末学业水平测试模拟试题含解析_第3页
2023届吉林省长春市第二实验学校八年级数学第一学期期末学业水平测试模拟试题含解析_第4页
2023届吉林省长春市第二实验学校八年级数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知:如图,四边形中,,.在边上求作点,则的最小值为()A. B. C. D.2.等腰三角形的两边长分别为4cm和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm或20cm3.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小 B.k>0,b<0C.当x<0时,y<0 D.方程kx+b=2的解是x=﹣14.将变形正确的是()A. B.C. D.5.64的平方根是()A.8 B. C. D.326.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.​

B.​

C.​

D.​7.数0.0000045用科学记数法可表示为()A.4.5×10﹣7 B.4.5×10﹣6 C.45×10﹣7 D.0.45×10﹣58.若实数满足,则的值是()A. B.2 C.0 D.19.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A.13cm B.17cm C.13或17cm D.10cm10.在平面直角坐标系中,点A(3,1)关于原点对称的点的坐标是()A.(1,3) B.(﹣1,﹣3) C.(﹣3,﹣1) D.(﹣3,1)11.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤12.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km,求提速前列车的平均速度.设列车提速前的平均速度是xkm/h,下面所列出的四个方程中,正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知正六边形ABCDEF的边长是5,点P是AD上的一动点,则PE+PF的最小值是_____.14.如图,△ABC的三边AB,BC,CA的长分别为14,12,8,其三条角平分线的交点为O,则_____.15.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.16.已知,.则___________,与的数量关系为__________.17.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为_____.18.如图,点O为等腰三角形ABC底边BC的中点,,,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x,y轴的距离中的最大值等于点Q到x,y轴的距离中的最大值,则称P,Q两点为“等距点”图中的P,Q两点即为“等距点”.(1)已知点A的坐标为.①在点中,为点A的“等距点”的是________;②若点B的坐标为,且A,B两点为“等距点”,则点B的坐标为________.(2)若两点为“等距点”,求k的值.20.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.(1)求点的坐标及直线的解析式.(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(8分)如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.22.(10分)如图,在平面直角坐标系中,点坐标为,点是轴正半轴上一点,且,点是轴上位于点右侧的一个动点,设点的坐标为.(1)点的坐标为___________;(2)当是等腰三角形时,求点的坐标;(3)如图2,过点作交线段于点,连接,若点关于直线的对称点为,当点恰好落在直线上时,_____________.(直接写出答案)23.(10分)如图,在平面直角坐标系xOy中,一次函数y1=−x+2与x轴、y轴分别相交于点A和点B,直线y2=kx+b(k≠0)经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.(1)求A、

B的坐标;(2)求△ABO的面积;(3)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式.24.(10分)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:______;______;______.(2)求线段所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.25.(12分)如图是规格为的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使点A的坐标为,点的坐标为;(2)在第二象限内的格点上找一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数,画出,则点的坐标是,的周长是(结果保留根号);(3)作出关于轴对称的.26.如图,平分,平分外角,.(1)求证:;(2)若,求的度数.

参考答案一、选择题(每题4分,共48分)1、B【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=3,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=10°,∴∠D'CE=30°,∴D'C=2D'E=2AB=2×3=1,∴PC+PD的最小值为1.故选:B.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,30°角的直角三角形的性质等,确定出P点是解答本题的关键.2、C【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.考点:等腰三角形的性质;三角形三边关系.3、D【分析】根据一次函数的性质判断即可.【详解】由图象可得:A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【点睛】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.4、C【分析】根据进行变形即可.【详解】解:即故选:C.【点睛】此题考查了完全平方公式,掌握是解题的关键,是一道基础题,比较简单.5、C【分析】根据平方根的定义:如果一个数的平方等于,这个数就叫做的平方根,即可得解.【详解】由已知,得64的平方根是,故选:C.【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题.6、A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【详解】解:连接AM,

∵AB=AC,点M为BC中点,

∴AM⊥CM(三线合一),BM=CM,

∵AB=AC=5,BC=6,

∴BM=CM=3,

在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,

又S△AMC=MN•AC=AM•MC,∴MN==.

故选A.【点睛】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.7、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000045=4.5×10-1.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、A【分析】根据题意由,变形可得,根据非负性进行计算可得答案.【详解】解:由,变形可得,根据非负性可得:解得:所以.故选:A.【点睛】本题考查平方和算术平方根的非负性,注意掌握和运用平方和算术平方根的非负性是解题的关键.9、B【详解】由题意得:三角形的三边可能为3、3、7或3、7、7,然后根据三角形的三边关系可知只能是3、7、7,∴周长为3+7+7=17cm.故选B.10、C【分析】直接利用关于原点对称点的性质得出答案.【详解】解:∵关于原点对称的点的横、纵坐标均互为相反数,∴点A(3,1)关于原点对称的点的坐标是:(﹣3,﹣1).故选:C.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.11、B【解析】试题分析:①、MN=AB,所以MN的长度不变;②、周长C△PAB=(AB+PA+PB),变化;③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线12、A【分析】先求出列车提速后的平均速度,再根据“时间路程速度”、“用相同的时间,列车提速前行驶,提速后比提速前多行驶”建立方程即可.【详解】由题意得:设列车提速前的平均速度是,则列车提速后的平均速度是则故选:A.【点睛】本题考查了列分式方程,读懂题意,正确求出列车提速后的平均速度是解题关键.二、填空题(每题4分,共24分)13、10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE的长为10,即PE+PF的最小值为10.故答案为10.14、;【分析】利用角平分线的性质,可得知△BCO,△ACO和△ABO中BC,AC和AB边上的高相等,根据三角形的面积比即为底的比,由此得知结果.【详解】如图,过O作OD⊥AB交AB于D,过O作OE⊥AC交AC于E,过O作OF⊥BC交BC于F,因为点O为三条角平分线的交点,所以OD=OE=OF,所以.故答案为:.【点睛】考查角平分线的性质,学生熟练掌握角平分线到角两边的距离相等这一性质是本题解题关键,利用性质找到面积比等于底的比,从而解题.15、甲【解析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.16、4【分析】由同底数的除法可得:从而可得:的值,由,可得可得从而可得答案.【详解】解:,,故答案为:.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键.17、20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:4,∵∠A+∠B+∠C=180°,∴∠A+4∠A+4∠A=180°,即9∠A=180°,∴∠A=20°,故答案为:20°.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.18、1.【分析】连接AO,由于△ABC是等腰三角形,点O是BC边的中点,故AO⊥BC,再根据勾股定理求出AO的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AO的长为CP+PO的最小值,由此即可得出结论.【详解】连接AO,

∵△ABC是等腰三角形,点O是BC边的中点,

∴AO⊥BC,∴,∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AO的长为CP+PO的最小值,∴△OPC周长的最小值.故答案为:1.【点睛】本题考查的是轴对称-最短路线问题以及勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.三、解答题(共78分)19、(1)①E,F.②;(2)或.【分析】(1)①找到E、F、G中到x、y轴距离最大为3的点即可;

②先分析出直线上的点到x、y轴距离中有3的点,再根据“等距点”概念进行解答即可;

(2)先分析出直线上的点到x、y轴距离中有4的点,再根据“等距点”概念进行解答即可.【详解】解:(1)①点到x,y轴的距离中的最大值为3,与点A是“等距点”的点是E,F.②点B坐标中到x,y轴距离中,至少有一个为3的点有,这些点中与点A符合“等距点”的定义的是.故答案为①E,F;②.(2)两点为“等距点”.若,则或,解得(舍去)或.若时,则,解得(舍去)或.根据“等距点”的定义知或符合题意.即k的值是1或2.【点睛】本题主要考查了坐标的性质,此题属于阅读理解类型题目,首先要读懂“等距点”的定义,而后根据概念解决问题,需要学生能很好的分析和解决问题.20、(1),直线的解析式为.(2)坐标为或.(3)存在,满足条件的点的坐标为或或.【分析】(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解答;(2)分两种情况:①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,,求出点;②当时,如图,同法可得,再将解代入直线解析式求出n值即可解答;(3)利用三角形面积公式求出点M的坐标,求出直线AM的解析式,作BE∥OC交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,再根据对称性可得即可解答.【详解】(1)直线与轴交于点,与轴交于点,,,,,,,,,设直线的解析式为,则有,,直线的解析式为.(2),,,,设,①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.是等腰直角三角形,易证,,,,点在直线,,,.②当时,如图,同法可得,点在直线上,,,.综上所述,满足条件的点坐标为或.(3)如图,设,,,,,,直线的解析式为,作交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,当点在第三象限,由BC=DE,根据对称性知,点D关于点A对称的点也符合条件,综上所述,满足条件的点的坐标为或或.【点睛】本题考查三角形的面积、待定系数法求直线解析式、全等三角形的判定与性质、平行四边形的判定与性质,是一次函数与几何图形的综合题,解答的关键是理解题意,认真分析,结合图形,寻找相关联的信息,利用待定系数法、数形结合等解题方法进行推理、计算.21、见解析;【解析】首先根据平行线的性质可得∠ACB=∠DFE,再根据ASA定理证明△ABC≌△DEF即可.【详解】证明:∵AC∥DF,∴∠ACB=∠DFE.在△ABC和△DEF中,∠A=∠D,AC=DF,∠ACB=∠DFE,∴△ABC≌△DEF.(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22、(1);(2)或或;(3)【分析】(1)根据勾股定理可以求出AO的长,则可得出A的坐标;(2)分三种情况讨论等腰三角形的情况,得出点P的坐标;(3)根据,点在直线上,得到,利用点,关于直线对称点,根据对称性,可证,可得,,设,则有,根据勾股定理,有:解之即可.【详解】解:(1)∵点坐标为,点是轴正半轴上一点,且,∴是直角三角形,根据勾股定理有:,∴点的坐标为;(2)∵是等腰三角形,当时,如图一所示:∴,∴点的坐标是;当时,如图二所示:∴∴点的坐标是;当时,如图三所示:设,则有∴根据勾股定理有:即:解之得:∴点的坐标是;(3)当是钝角三角形时,点不存在;当是锐角三角形时,如图四示:连接,∵,点在直线上,∴和是直角三角形,∴,∵点,关于直线对称点,根据对称性,有,∴,∴则有:∴是等腰三角形,则有,∴,设,则有,根据勾股定理,有:即:解之得:【点睛】本题考查了三角形的综合问题,涉及的知识点有:解方程,等腰三角形的判定与性质,对称等知识点,能分类讨论,熟练运用各性质定理,是解题的关键.23、(1)A(3,0),B(0,2);(2)3;(3)P(,),y=-1x+1【分析】(1)已知直线y1的解析式,分别令x=0和y=0即可求出A和B的坐标;(2)根据(1)中求出的A和B的坐标,可知OA和OB的长,利用三角形的面积公式即可求出S△ABO;(3)由(2)中的S△ABO,可推出S△APC的面积,求出yp,继而求出点P的坐标,将点C和点P的坐标联立方程组求出k和b的值后即可求出函数解析式.【详解】解:(1)∵一次函数的解析式为y1=-x+2,令x=0,得y1=2,∴B(0,2),令y1=0,得x=3,∴A(3,0);(2)由(1)知:OA=3,OB=2,∴S△ABO=OA•OB=×3×2=3;(3)∵S△ABO=×3=,点P在第一象限,∴S△APC=AC•yp=×(3-1)×yp=,解得:yp=,又点P在直线y1上,∴=-x+2,解得:x=,∴P点坐标为(,),将点C(1,0)、P(,)代入y=kx+b中,得,解得:.故可得直线CP的函数表达式为y=-1x+1.【点睛】本题是一道一次函数综合题,考查了一次函数的性质、三角形的面积公式、待定系数法求解一次函数的解析式等知识点,解题关键是根据S△APC=AC•yp求出点P的纵坐标,难度中等.24、(1)10,15,200;(2);(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论