2022年越秀区执信中学数学九上期末检测试题含解析_第1页
2022年越秀区执信中学数学九上期末检测试题含解析_第2页
2022年越秀区执信中学数学九上期末检测试题含解析_第3页
2022年越秀区执信中学数学九上期末检测试题含解析_第4页
2022年越秀区执信中学数学九上期末检测试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.从一组数据1,2,2,3中任意取走一个数,剩下三个数不变的是()A.平均数 B.众数 C.中位数 D.方差2.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=()A.1:4 B.1:5 C.2: D.1:3.下列方程中没有实数根的是()A. B.C. D.4.以原点为中心,把点逆时针旋转,得点,则点坐标是()A. B. C. D.5.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.96.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k≥﹣4 D.k≥47.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是()个.①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•ABA.1 B.2 C.3 D.48.下列等式中从左到右的变形正确的是().A. B. C. D.9.反比例函数,下列说法不正确的是()A.图象经过点(1,﹣1) B.图象位于第二、四象限C.图象关于直线y=x对称 D.y随x的增大而增大10.将抛物线y=-2x2向左平移3个单位,再向下平移4个单位,所得抛物线为()A. B.C. D.11.已知k1<0<k2,则函数y=k1x和的图象大致是()A. B. C. D.12.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个二、填空题(每题4分,共24分)13.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.14.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.15.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.16.如图,点,分别在线段,上,若,,,,则的长为________.17.如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为___________.18.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题(共78分)19.(8分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.20.(8分)在下列网格图中,每个小正方形的边长均为1个单位.Rt△ABC中,∠C=90°,AC=3,BC=4,△ABC以A为旋转中心,沿顺时针方向旋转90°后得到△AB1C1;(1)作出△AB1C1;(不写画法)(2)求点C转过的路径长;(3)求边AB扫过的面积.21.(8分)已知等边△ABC的边长为2,(1)如图1,在边BC上有一个动点P,在边AC上有一个动点D,满足∠APD=60°,求证:△ABP~△PCD(2)如图2,若点P在射线BC上运动,点D在直线AC上,满足∠APD=120°,当PC=1时,求AD的长(3)在(2)的条件下,将点D绕点C逆时针旋转120°到点D',如图3,求△D′AP的面积.22.(10分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.(1)求的值和点的坐标;(2)如果点为轴上的一点,且∠直接写出点A的坐标.23.(10分)如图,在Rt△ABC中,∠A=90°,AC=3,AB=4,动点P从点A出发,沿AB方向以每秒2个单位长度的速度向终点B运动,点Q为线段AP的中点,过点P向上作PM⊥AB,且PM=3AQ,以PQ、PM为边作矩形PQNM.设点P的运动时间为t秒.(1)线段MP的长为(用含t的代数式表示).(2)当线段MN与边BC有公共点时,求t的取值范围.(3)当点N在△ABC内部时,设矩形PQNM与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当点M到△ABC任意两边所在直线距离相等时,直接写出此时t的值.24.(10分)已知:在中,.(1)求作:的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,则.25.(12分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.26.如图,一次函数的图象与反比例函数的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(-3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形.若存在,求出点P的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据中位数的定义求解可得.【详解】原来这组数据的中位数为=2,无论去掉哪个数据,剩余三个数的中位数仍然是2,故选:C.【点睛】此题考查数据平均数、众数、中位数方差的计算方法,掌握正确的计算方法才能解答.2、C【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.【详解】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:4,∴AP=4P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=4x,∴PP'=,∴P'B=PB=,∴P′A:P′B=2:,故选:C.【点睛】本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.3、D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.【详解】解:A、△==5>0,方程有两个不相等的实数根;B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、B【分析】画出图形,利用图象法即可解决问题.【详解】观察图象可知B(-5,4),故选B.【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题5、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【点睛】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.6、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论.【详解】解:∵关于x的一元二次方程x2+1x+k=0有两个相等的实数根,∴△=12﹣1k=16﹣1k=0,解得:k=1.故选:A.【点睛】本题考查了根的判别式以及解一元一次方程,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.7、C【分析】由图可知△ABC与△ACD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【详解】有三个①∠ABC=∠ACD,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;②∠ADC=∠ACB,再加上∠A为公共角,可以根据有两组角对应相等的两个三角形相似来判定;③中∠A不是已知的比例线段的夹角,不正确④可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;故选C【点睛】本题考查相似三角形的判定定理,熟练掌握判定定理是解题的关键8、A【分析】根据同底数幂乘除法和二次根式性质进行分析即可.【详解】A.,正确;B.,错误;C.,c必须不等于0才成立,错误;D.,错误故选:A.【点睛】考核知识点:同底数幂除法,二次根式的化简,掌握运算法则是关键.9、D【分析】反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】A、图象经过点(1,﹣1),正确;B、图象位于第二、四象限,故正确;C、双曲线关于直线y=x成轴对称,正确;D、在每个象限内,y随x的增大而增大,故错误,故选:D.【点睛】此题考查反比例函数的性质,熟记性质并运用解题是关键.10、B【解析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:把抛物线y=-2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是y=-2(x+3)2-4,故选:B.【点睛】本题主要考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.11、D【解析】试题分析::∵k1<0<k2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D.考点:1.反比例函数的图象;2.正比例函数的图象.12、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.二、填空题(每题4分,共24分)13、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【详解】画树状图得:

∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),

∴点(a,b)在图象上的概率为.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.14、1【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)-3α,然后利用整体代入的方法计算即可.【详解】解:∵α,β是方程x2﹣3x﹣4=1的两个实数根,∴α+β=3,αβ=-4,∴α2+αβ﹣3α=α(α+β)-3α=3α-3α=1.故答案为1【点睛】本题主要考查了根与系数的关系,解题的关键是利用整体法代值计算,此题难度一般.15、7【解析】试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.又∵∠B=∠C=60°,∴△ABD∽△DCE.∴,即.∴.16、7.1【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:,,即,解得,,,故答案为:7.1.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17、【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【详解】解:由题意可得出:∠BDC=45°,∠DA′E=90°,

∴∠DEA′=45°,

∴A′D=A′E,

∵在正方形ABCD中,AD=1,

∴AB=A′B=1,

∴BD=,

∴A′D=,

∴在Rt△DA′E中,DE=.故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.18、【分析】利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,∴击中黑色区域的概率==.故答案是:.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题(共78分)19、(1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【分析】(1)设乙工程队每天能完成绿化的面积是m2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=2400,整理得:y=-2x+48,即可解答;(3)根据甲乙两队施工的总天数不超过30天,得到x≥18,设施工总费用为w元,根据题意得:,根据一次函数的性质,即可解答.【详解】(1)设乙工程队每天能完成绿化面积是,根据题意得:,解得:,经检验,是原方程的解,则甲工程队每天能完成绿化的面积是答:甲、乙工程队每天能完成绿化的面积分别是、;(2)根据题意得:,整理得:,∴y与x的函数解析式为:.(3)∵甲乙两队施工的总天数不超过30天,

∴,∴,解得:,设施工总费用为元,根据题意得:,∵,∴随的增大而增大,当时,有最小值,最小值为万元,此时,,答:安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【点睛】本题考查了分式方程、一元一次不等式和一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.掌握利用一次函数的增减性求最值的方法.20、(1)见解析;(2)π;(3)π【分析】(1)根据旋转的性质可直接进行作图;(2)由(1)图及旋转的性质可得点C的运动路径为圆弧,其所在的圆心为A,半径为3,然后根据弧长计算公式可求解;(3)由题意可得边AB扫过的面积为扇形的面积,其扇形的圆心角为90°,半径为5,然后可求解.【详解】解:(1)如图所示:(2)∵由已知得,CA=3,∴点C旋转到点C1所经过的路线长为:=π×3=π;(3)由图可得:AB===5,∴S=π×52=π.【点睛】本题主要考查旋转的性质、弧长计算及扇形的面积,熟练掌握旋转的性质、弧长计算及扇形的面积公式是解题的关键.21、(1)见解析;(2);(3)【分析】(1)先利用三角形的内角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,进而得出∠BAP=∠CPD,即可得出结论;(2)先构造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,进而求出AP,再判断出△ACP∽∠APD,得出比例式即可得出结论;(3)先求出CD,进而得出CD',再构造出直角三角形求出D'H,进而得出D'G,再求出AM,最后用面积差即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如图2,过点P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等边三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根据勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根据勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如图3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋转知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,过点D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根据勾股定理得,D'H=CH=,过点D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分线定理),∴S四边形ACPD'=S△ACD'+S△PCD'=AC•D'G+CP•DH'=×2×+×1×=,过点A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根据勾股定理得,AM=BM=,∴S△ACP=CP•AM=×1×=,∴S△D'AP=S四边形ACPD'﹣S△ACP=﹣=.【点睛】此题主要考查四边形综合,解题的关键是熟知等边三角形的性质、旋转的特点及相似三角形的判定与性质、勾股定理的应用.22、(1)k=1,Q(-1,-1).(2)【分析】(1)将点P代入直线中即可求出m的值,再将P点代入反比例函数中即可得出k的值,通过直线与反比例函数联立即可求出Q的坐标;(2)先求出PQ之间的距离,再利用直角三角形斜边的中线等于斜边的一半即可求出点A的坐标.【详解】解:(1)∵点(,)在直线上,∴.∵点(,)在上,∴.∴∵点为直线与的交点,∴解得∴点坐标为(,).(2)由勾股定理得∵∠∴∴(,0),(,0).【点睛】本题主要考查反比例函数与一次函数的综合,掌握待定系数法,勾股定理是解题的关键.23、(1)3t;(2)满足条件的t的值为≤t≤;(3)S=;(4)满足条件的t的值为或或.【分析】(1)根据路程、速度、时间的关系再结合题意解答即可.(2)分别出点M、N落在BC上时的t的范围即可;(3)分重叠部分是矩形PQNM和五边形PQNEF两种情况进行解答即可;(4)按以下三种情形:当点M落在∠ABC的角平分线BF上时,满足条件.作FELBC于E;当点M落在∠ACB的角平分线上时,满足条件作EFLBC于F;当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.分别求解即可解答.【详解】解:(1)由题意AP=2t,AQ=PQ=t,∵PM=3PQ,∴PM=3t.故答案为3t.(2)如图2﹣1中,当点M落在BC上时,∵PM∥AC,∴,∴,解得t=如图2﹣2中,当点N落在BC上时,∵NQ∥AC,∴,∴,解得t=,综上所述,满足条件的t的值为≤t≤.(3)如图3﹣1中,当0<t≤时,重叠部分是矩形PQNM,S=3t2如图3﹣2中,当<t≤时,重叠部分是五边形PQNEF.S=S矩形PQNM﹣S△EFM=3t2﹣•[3t﹣(4﹣2t)]•[3t﹣(4﹣2t)]=﹣t2+18t﹣6,综上所述,.(4)如图4﹣1中,当点M落在∠ABC的角平分线BF上时,满足条件.作FE⊥BC于E.∵∠FAB=∠FEB=90°,∠FBA=∠FBE,BF=BF,∴△BFA≌△BFE(AAS),∴AF=EF,AB=BE=4,设AF=EF=x,∵∠A=90°,AC=3,AB=4,∴BC==5,∴EC=BC﹣BE=5﹣4=1,在Rt△EFC中,则有x2+12=(3﹣x)2,解得x=,∵PM∥AF,∴,∴,∴t=如图4﹣2中,当点M落在∠ACB的角平分线上时,满足条件作EF⊥BC于F.同法可证:△ECA≌△ECF(AAS),∴AE=EF,AC=CF=3,设AE=EF=y,∴BF=5﹣3=2,在Rt△EFB中,则有x2+22=(4﹣x)2,解得x=,∵PM∥AC,∴,∴,解得t=.如图4﹣3中,当点M落在△ABC的∠ACB的外角的平分线上时,满足条件.设MC的延长线交BA的延长线于E,作EF⊥BC交BC的延长线于分,同法可证:AC=CF=3,EF=AE,设EF=EA=x,在Rt△EFB中,则有x2+82=(x+4)2,解得x=6,∵AC∥PM,∴,∴,解得t=,综上所述,满足条件的t的值为或或.【点睛】本题考查了矩形的性质,多边形的面积,角平分线的性质等知识,掌握分类讨论的思想思是解答本题的关键.24、(1)见解析;(2)【分析】(1)作线段的垂直平分线,两线交于点,以为圆心,为半径作,即为所求.(2)在中,利用勾股定理求出即可解决问题.【详解】解:(1)如图即为所求.(2)设线段的垂直平分线交于点.由题意,在中,,∴.故答案为.【点睛】本题考查作图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论