




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm,则可以列出关于x的方程是()A.x(26-2x)=80 B.x(24-2x)=80C.(x-1)(26-2x)=80 D.x(25-2x)=802.作⊙O的内接正六边形ABCDEF,甲、乙两人的作法分别是:甲:第一步:在⊙O上任取一点A,从点A开始,以⊙O的半径为半径,在⊙O上依次截取点B,C,D,E,F.第二步:依次连接这六个点.乙:第一步:任作一直径AD.第二步:分别作OA,OD的中垂线与⊙O相交,交点从点A开始,依次为点B,C,E,F.第三步:依次连接这六个点.对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B.甲、乙均错误C.甲错误,乙正确 D.甲、乙均正确3.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.无实数根4.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:①点H是△ABD的内心②点H是△ABD的外心③点H是△BCD的外心④点H是△ADC的外心其中正确的有()A.1个 B.2个 C.3个 D.4个5.下列四个物体的俯视图与右边给出视图一致的是()A. B. C. D.6.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。其中随机事件有()A.1个 B.2个 C.3个 D.4个7.下列各式中属于最简二次根式的是()A. B. C. D.8.如图,在平面直角坐标系中,菱形ABCD的顶点A(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上,若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为()A.15 B.20 C.25 D.309.下面哪个图形不是正方体的平面展开图()A. B.C. D.10.已知是一元二次方程的解,则的值为()A.-5 B.5 C.4 D.-411.在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是()A. B. C. D.12.下列关于x的一元二次方程,有两个不相等的实数根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=0二、填空题(每题4分,共24分)13.抛物线y=(x﹣2)2﹣3的顶点坐标是____.14.计算:×=______.15.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________16.已知二次函数,当-1≤x≤4时,函数的最小值是__________.17.如图,△ABC中,AB=6,BC=1.如果动点D以每秒2个单位长度的速度,从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x秒时DE的长度为y,写出y关于x的函数解析式_____(不用写自变量取值范围).18.当______时,关于的方程有实数根.三、解答题(共78分)19.(8分)已知二次函数与轴交于、(在的左侧)与轴交于点,连接、.(1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、、,求的周长最小值;(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧).将绕点顺时针旋转至.抛物线的对称轴上有—动点,坐标系内是否存在一点,使得以、、、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.20.(8分)如图,是半圆的直径,是半圆上的一点,切半圆于点,于为点,与半圆交于点.(1)求证:平分;(2)若,求圆的直径.21.(8分)如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系?请说明理由;(2)当AB=DC时,求证:四边形AEFD是矩形.22.(10分)如图,在直角坐标系中,点A的坐标为(-2,0),OB=OA,且∠AOB=120°.(1)求经过A、O、B三点的抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点C,使△OBC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)若点M为抛物线上一点,点N为对称轴上一点,是否存在点M、N使得A、O、M、N构成的四边形是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.23.(10分)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.24.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?25.(12分)已知在矩形中,,.是对角线上的一个动点(点不与点,重合),过点作,交射线于点.联结,画,交于点.设,.(1)当点,,在一条直线上时,求的面积;(2)如图1所示,当点在边上时,求关于的函数解析式,并写出函数定义域;(3)联结,若,请直接写出的长.26.已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点(3,﹣3).(1)求抛物线的解析式及顶点A的坐标;(2)将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,如图,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根据题意可列出方程.【详解】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根据题意得:x(26-2x)=1.故选A.【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.2、D【分析】根据等边三角形的判定与性质,正六边形的定义解答即可.【详解】(1)如图1,由作法知,△AOB,△BOC,△COD,△DOE,△EOF,△AOF都是等边三角形,∴∠ABO=∠CBO=60°,∴∠ABC=120°,同理可证:∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=∠FAB=120°,∵AB=BC=CD=DE=EF=AF,∴六边形ABCDEF是正六边形,故甲正确;(2)如图2,连接OB,OF,由作法知,OF=AF,AB=OB,∵OA=OF=OB,∴△AOF,△AOB是等边三角形,∴∠OAF=∠OAB=60°,AB=AF,∴∠BAF=120°,同理可证,∠ABC=∠BCD=∠CDE=∠DEF=∠EFA=∠FAB=120°,AB=BC=CD=DE=EF=AF,∴六边形ABCDEF是正六边形,故乙正确.故选D.【点睛】本题考查了圆的知识,等边三角形的判定与性质,线段垂直平分线的性质,以及正六边形的定义,熟练掌握各知识点是解答本题的关键.3、B【分析】把一元二次方程转换成一般式:(),再根据求根公式:,将相应的数字代入计算即可.【详解】解:由题得:∴一元二次方程有两个相等的实数根故选:B.【点睛】本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键.4、C【分析】先利用勾股定理计算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,则CB⊥AB,CD⊥AD,根据角平分线定理的逆定理可判断点C不在∠BAD的角平分线上,则根据三角形内心的定义可对①进行判断;由于HA=HB=HC=HD=,则根据三角形外心的定义可对②③④进行判断.【详解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都为直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴点C不在∠BAD的角平分线上,∴点H不是△ABD的内心,所以①错误;∵HA=HB=HC=HD=,∴点H是△ABD的外心,点H是△BCD的外心,点H是△ADC的外心,所以②③④正确.故选:C.【点睛】本题考查了三角形的内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心和勾股定理.5、C【详解】解:几何体的俯视图为,故选C【点睛】本题考查由三视图判断几何体,难度不大.6、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断.【详解】解:①经过有交通信号灯的路口,遇到红灯,是随机事件;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;③长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;④买一张体育彩票中奖,是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、A【分析】根据最简二次根式的定义解答即可.【详解】A.是最简二次根式;B.∵=,∴不是最简二次根式;C.∵=,∴不是最简二次根式;D.∵,∴不是最简二次根式;故选A.【点睛】本题考查了最简二次根式的识别,如果二次根式的被开方式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.8、B【分析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.【详解】解:抛物线的对称轴为,∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
∴点C的横坐标为-1.
∵四边形ABCD为菱形,
∴AB=BC=AD=1,
∴点D的坐标为(-2,0),OA=2.
在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD•OB=1×4=3.
故选:B.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.9、A【分析】根据正方体展开图的11种形式,对各选项分析判断即可得解.【详解】解:A、不是正方体展开图,符合题意;B、是正方体展开图,不符合题意;C、是正方体展开图,不符合题意;D、是正方体展开图,不符合题意.故选:A.【点睛】本题主要考查了正方体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.10、B【解析】根据方程的解的定义,把代入原方程即可.【详解】把代入得:4-2b+6=0b=5故选:B【点睛】本题考查的是方程的解的定义,理解方程解的定义是关键.11、D【解析】试题分析:A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误;B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确.故选D.考点:1、二次函数的图象;2、一次函数的图象12、D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.二、填空题(每题4分,共24分)13、(2,﹣3)【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点.解题关键点:熟记求抛物线顶点坐标的公式.14、7【分析】利用二次根式的乘法法则计算即可.【详解】解:原式故答案为:7【点睛】本题考查二次根式的乘法运算,熟练掌握二次根式的乘法运算法则是解题关键.15、【分析】记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,求出,,,探究规律后即可解决问题.【详解】解:记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,∵,,,∴,∴.故答案为:.【点睛】本题考查了三角形中位线定理,三角形的面积,图形类规律探索等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.16、-1【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x=1,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵−1≤x≤4,∴当x=1时,y取得最小值,此时y=-1,故答案为:-1.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17、y=﹣3x+1【分析】由DE∥BC可得出△ADE∽△ABC,再利用相似三角形的性质,可得出y关于x的函数解析式.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴y=﹣3x+1.故答案为:y=﹣3x+1.【点睛】本题考查根据实际问题列函数关系式,利用相似三角形的性质得出是关键.18、【分析】根据题意分关于的方程为一元一次方程和一元二次方程进行分析计算.【详解】解:①当关于的方程为一元一次方程时,有,解得,又因为时,方程无解,所以;②当关于的方程为一元二次方程时,根据题意有,解得;综上所述可知:.故答案为:.【点睛】本题考查一元二次方程根的判别式,解答此题时要注意关于的方程为一元一次方程的情况.三、解答题(共78分)19、(1);(1)存在,理由见解析;,,,,【分析】(1)利用待定系数法求出A,B,C的坐标,如图1中,作PQ∥y轴交BC于Q,设P,则Q,构建二次函数确定点P的坐标,作P关于y轴的对称点P1(-2,6),作P关于x轴的对称点P1(2,-6),的周长最小,其周长等于线段的长,由此即可解决问题.(1)首先求出平移后的抛物线的解析式,确定点H,点C′的坐标,分三种情形,当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S1K1.当OC′=OS时,可得菱形OC′K3S3,菱形OC′K2S2.当OC′是菱形的对角线时,分别求解即可解决问题.【详解】解:(1)如图,,过点作轴平行线,交线段于点,设,=-(m1-2)1+2,∵,∴m=2时,△PBC的面积最大,此时P(2,6)作点关于轴的对称点,点关于轴的对称点,连接交轴、轴分别为,此时的周长最小,其周长等于线段的长;∵,∴.(1)如图,∵E(0,-2),平移后的抛物线经过E,B,∴抛物线的解析式为y=-x1+bx-2,把B(8,0)代入得到b=2,∴平移后的抛物线的解析式为y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,∴H(1,0),∵△CHB绕点H顺时针旋转90°至△C′HB′,∴C′(6,1),当OC′=C′S时,可得菱形OC′S1K1,菱形OC′S1K1,∵OC′=C′S==1,∴可得S1(5,1-),S1(5,1+),∵点C′向左平移一个单位,向下平移得到S1,∴点O向左平移一个单位,向下平移个单位得到K1,∴K1(-1,-),同法可得K1(-1,),当OC′=OS时,可得菱形OC′K3S3,菱形OC′K2S2,同法可得K3(11,1-),K2(11,1+),当OC′是菱形的对角线时,设S5(5,m),则有51+m1=11+(1-m)1,解得m=-5,∴S5(5,-5),∵点O向右平移5个单位,向下平移5个单位得到S5,∴C′向上平移5个单位,向左平移5个单位得到K5,∴K5(1,7),综上所述,满足条件的点K的坐标为(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7).【点睛】本题属于二次函数综合题,考查了二次函数的性质,平移变换,翻折变换,菱形的判定和性质,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.20、(1)见解析;(2).【分析】(1)连结OC,如图,根据切线的性质得OC⊥CD,则OC∥BD,所以∠1=∠3,加上∠1=∠2,从而得到∠2=∠3;
(2)连结AE交OC于G,如图,利用圆周角定理得到∠AEB=90°,再证明四边形CDEG为矩形得到GE=CD=8,然后利用勾股定理计算AB的长即可.【详解】解:(1)证明:连结OC,如图,
∵CD为切线,
∴OC⊥CD,
∵BD⊥DF,
∴OC∥BD,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴BC平分∠ABD;
(2)解:连结AE交OC于G,如图,
∵AB为直径,
∴∠AEB=90°,
∵OC∥BD,
∴OC⊥CD,
∴AG=EG,
易得四边形CDEG为矩形,
∴GE=CD=8,
∴AE=2EG=16,
在Rt△ABE中,AB==,即圆的直径为.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21、(1),理由见解析;(2)见解析【分析】(1)由四边形AEFD是平行四边形可得AD=EF,根据条件可证四边形ABED是平行四边形,四边形AFCD是平行四边形,所以AD=BE,AD=FC,所以AD=BC;(2)根据矩形的判定和定义,对角线相等的平行四边形是矩形.只要证明AF=DE即可得出结论.【详解】证明:(1)AD=BC理由如下:
∵AD∥BC,AB∥DE,AF∥DC,
∴四边形ABED和四边形AFCD都是平行四边形.
∴AD=BE,AD=FC,
又∵四边形AEFD是平行四边形,
∴AD=EF.
∴AD=BE=EF=FC.∴;(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,
∴DE=AB,AF=DC.
∵AB=DC,
∴DE=AF.
又∵四边形AEFD是平行四边形,
∴平行四边形AEFD是矩形.考点:1.平行四边形的判定与性质;2.矩形的判定.22、(1);(2)(-1,);(3)M1(-1,-),M2(-3,),M3(1,).【解析】(1)先确定出点B坐标,再用待定系数法即可;(2)先判断出使△BOC的周长最小的点C的位置,再求解即可;(3)分OA为对角线、为边这两种情况进行讨论计算即可得出答案.【详解】(1)如图所示,过点B作BD⊥x轴于点D,∵点A的坐标为(-2,0),OB=OA,∴OB=OA=2,∵∠AOB=120°,∴∠BOD=60°,在Rt△OBD中,∠ODB=90°,∴∠OBD=30°,∴OD=1,DB=,∴点B的坐标是(1,),设所求抛物线的解析式为y=ax2+bx+c,由已知可得:,解得:∴所求抛物线解析式为;(2)存在.如图所示,∵△BOC的周长=OB+BC+CO,又∵OB=2,∴要使△BOC的周长最小,必须BC+CO最小,∵点O和点A关于对称轴对称,∴连接AB与对称轴的交点即为点C,由对称可知,OC=OA,此时△BOC的周长=OB+BC+CO=OB+BC+AC;点C为直线AB与抛物线对称轴的交点,设直线AB的解析式为y=kx+b,将点A(−2,0),B(1,)分别代入,得:,解得:,∴直线AB的解析式为y=x+,当x=−1时,y=,∴所求点C的坐标为(−1,);(3)如图所示,①当以OA为对角线时,∵OA与MN互相垂直且平分,∴点M1(−1,−),②当以OA为边时,∵OA=MN且OA∥MN,即MN=2,MN∥x轴,设N(−1,t),则M(−3,t)或(1,t)将M点坐标代入,解得,t=,∴M2(−3,),M3(1,)综上:点M的坐标为:(-1,-),或(-3,)或(1,).【点睛】本题是一道二次函数综合题,主要考查了二次函数的性质、最短路径、平行四边形等知识.综合运用所学知识,并进行分类讨论是解题的关键.23、(1)(2)水流喷出的最大高度为2米【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函数表达式为y=.(2)解:∴当x=1时,y取得最大值,此时y=2.答:水流喷出的最大高度为2米.【点睛】本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.24、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度市场拓展补充协议
- 2025年玻璃纤维制品项目规划申请报告模板
- 五年级信息技术暑期学习计划
- 2025年冷却风扇项目提案报告模板
- 2024-2025学年度校园心理安全工作计划
- 2025年前列腺素类药物项目申请报告模板
- 2025年综采设备项目提案报告
- 班主任班级信息公开工作计划
- 人教版道德与法治四年级上册项目式学习计划
- 重庆烟草笔试试题2024
- 耳石症的诊断与治疗
- 2024年度合作框架协议:国际能源公司与当地政府新能源项目合作
- 信息系统安全审计合同模板
- 企业形象设计(CIS)战略策划及实施计划书
- 个人保证无纠纷承诺保证书
- 银行保洁服务合同样本
- 19G522-1钢筋桁架混凝土楼板图集
- 2023年上半年中级信息系统监理师下午真题
- 农学专业深度解析模板
- 储罐内喷铝施工方案
- 2024年江西省高考地理真题(解析版)
评论
0/150
提交评论