2017-2018学年同步备课套餐之高一物理教科版版必修2讲义:第三章 习题课2_第1页
2017-2018学年同步备课套餐之高一物理教科版版必修2讲义:第三章 习题课2_第2页
2017-2018学年同步备课套餐之高一物理教科版版必修2讲义:第三章 习题课2_第3页
2017-2018学年同步备课套餐之高一物理教科版版必修2讲义:第三章 习题课2_第4页
2017-2018学年同步备课套餐之高一物理教科版版必修2讲义:第三章 习题课2_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精习题课2变轨问题双星问题[学习目标]1.理解赤道物体、同步卫星和近地卫星的区别。2.会分析卫星(或飞船)的变轨问题。3.掌握双星的运动特点及其问题的分析方法.一、“赤道上物体"“同步卫星”和“近地卫星”的比较例1如图1所示,A为地面上的待发射卫星,B为近地圆轨道卫星,C为地球同步卫星.三颗卫星质量相同,三颗卫星的线速度大小分别为vA、vB、vC,角速度大小分别为ωA、ωB、ωC,周期分别为TA、TB、TC,向心加速度分别为aA、aB、aC,则()图1A。ωA=ωC<ωB B.TA=TC<TBC。vA=vC<vB D。aA=aC>aB答案A解析同步卫星与地球自转同步,故TA=TC,ωA=ωC,由v=ωr及a=ω2r得vC〉vA,aC〉aA同步卫星和近地卫星,根据eq\f(GMm,r2)=meq\f(v2,r)=mω2r=meq\f(4π2,T2)r=ma,知vB〉vC,ωB〉ωC,TB〈TC,aB>aC。故可知vB>vC〉vA,ωB>ωC=ωA,TB〈TC=TA,aB〉aC〉aA。选项A正确,B、C、D错误.同步卫星、近地卫星、赤道上物体的比较(1)同步卫星和近地卫星:相同点:都是万有引力提供向心力即都满足eq\f(GMm,r2)=meq\f(v2,r)=mω2r=meq\f(4π2,T2)r=man。由上式比较各物理量的大小关系,即r越大,v、ω、an越小,T越大.(2)同步卫星和赤道上物体相同点:周期和角速度相同不同点:向心力来源不同对于同步卫星有eq\f(GMm,r2)=man=mω2r。对于赤道上物体,有eq\f(GMm,r2)=mg+mω2r,因此要通过v=ωr,an=ω2r比较两者的线速度和向心加速度的大小。针对训练1(多选)关于近地卫星、同步卫星、赤道上的物体,以下说法正确的是()A。都是万有引力等于向心力B.赤道上的物体和同步卫星的周期、线速度、角速度都相等C.赤道上的物体和近地卫星的线速度、周期不同D.同步卫星的周期大于近地卫星的周期答案CD解析赤道上的物体是由万有引力的一个分力提供向心力,A项错误;赤道上的物体和同步卫星有相同周期和角速度,但线速度不同,B项错误;同步卫星和近地卫星有相同的中心天,D项正确;赤道上物体、近地卫星、同步卫星三者间的周期关系为T赤=T同〉T近,根据v=ωr可知v赤<v同,则线速度关系为v赤<v同<v近,故C项正确.二、人造卫星的变轨问题1.卫星的变轨问题:卫星变轨时,先是线速度v发生变化导致需要的向心力发生变化,进而使轨道半径r发生变化.(1)当卫星减速时,卫星所需的向心力F向=meq\f(v2,r)减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁。(2)当卫星加速时,卫星所需的向心力F向=meq\f(v2,r)增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.以上两点是比较椭圆和圆轨道切点速度的依据.2。飞船对接问题:(1)低轨道飞船与高轨道空间站对接如图2甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接。图2(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.例2如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3。轨道1、2相切于Q点,轨道2、3相切于P点,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是()图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C。卫星在轨道1上经过Q点时的速率大于它在轨道2上经过Q点时的速率D。卫星在轨道2上经过P点时的加速度小于它在轨道3上经过P点时的加速度答案B解析卫星在圆轨道上做匀速圆周运动时有:Geq\f(Mm,r2)=meq\f(v2,r),v=eq\r(\f(GM,r))因为r1<r3,所以v1>v3,A项错误,由开普勒第三定律知T3>T2,B项正确;在Q点从轨道1到轨道2需要做离心运动,故需要加速.所以在Q点v2Q〉v1Q,C项错误.在同一点P,由eq\f(GMm,r2)=man知,卫星在轨道2上经过P点的加速度等于它在轨道3上经过P点的加速度,D项错误。判断卫星变轨时速度、加速度变化情况的思路:(1)判断卫星在不同圆轨道的运行速度大小时,可根据“越远越慢”的规律判断。(2)判断卫星在同一椭圆轨道上不同点的速度大小时,可根据开普勒第二定律判断,即离中心天体越远,速度越小。(3)判断卫星由圆轨道进入椭圆轨道或由椭圆轨道进入圆轨道时的速度大小如何变化时,可根据离心运动或近心运动的条件进行分析。(4)判断卫星的加速度大小时,可根据a=eq\f(F,m)=Geq\f(M,r2)判断.针对训练2(多选)如图4所示,发射同步卫星的一般程序是:先让卫星进入一个近地的圆轨道,然后在P点变轨,进入椭圆形转移轨道(该椭圆轨道的近地点为近地圆轨道上的P点,远地点为同步圆轨道上的Q点),到达远地点Q时再次变轨,进入同步轨道.设卫星在近地圆轨道上运行的速率为v1,在椭圆形转移轨道的近地点P点的速率为v2,沿转移轨道刚到达远地点Q时的速率为v3,在同步轨道上的速率为v4,三个轨道上运动的周期分别为T1、T2、T3,则下列说法正确的是()图4A.在P点变轨时需要加速,Q点变轨时要减速B.在P点变轨时需要减速,Q点变轨时要加速C。T1<T2<T3D。v2>v1>v4>v3答案CD解析卫星在椭圆形转移轨道的近地点P时做离心运动,所受的万有引力小于所需要的向心力,即Geq\f(Mm,r\o\al(

2,1))<meq\f(v\o\al(

2,2),r1),而在圆轨道时万有引力等于向心力,即Geq\f(Mm,r\o\al(

2,1))=meq\f(v\o\al(

2,1),r1),所以v2>v1;同理,由于卫星在转移轨道上Q点做离心运动,可知v3<v4,故选项A、B错误;又由人造卫星的线速度v=eq\r(\f(GM,r))可知v1>v4,由以上所述可知选项D正确;由于轨道半径(半长轴)r1<r2<r3,由开普勒第三定律eq\f(r3,T2)=k(k为常量)得T1<T2<T3,故选项C正确。三、双星问题例3两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图5所示。已知双星的质量分别为m1和m2,它们之间的距离为L,求双星的运行轨道半径r1和r2及运行周期T。图5答案r1=eq\f(Lm2,m1+m2)r2=eq\f(Lm1,m1+m2)T=eq\r(\f(4π2L3,Gm1+m2))解析双星间的引力提供了各自做圆周运动的向心力对m1:eq\f(Gm1m2,L2)=m1r1ω2,对m2:eq\f(Gm1m2,L2)=m2r2ω2,且r1+r2=L,解得r1=eq\f(Lm2,m1+m2),r2=eq\f(Lm1,m1+m2).由Geq\f(m1m2,L2)=m1r1eq\f(4π2,T2)及r1=eq\f(Lm2,m1+m2)得周期T=eq\r(\f(4π2L3,Gm1+m2))。1。双星问题的特点(1)两星的运动轨道为同心圆,圆心是它们之间连线上的某一点.(2)两星的向心力大小相等,由它们间的万有引力提供。(3)两星的运动周期、角速度相同.(4)两星的轨道半径之和等于两星之间的距离,即r1+r2=L.2。双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即eq\f(Gm1m2,L2)=m1ω2r1=m2ω2r2。针对训练3如图6所示,两个星球A、B组成双星系统,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动.已知A、B星球质量分别为mA、mB,万有引力常量为G,求eq\f(L3,T2)(其中L为两星中心距离,T为两星的运动周期)。图6答案eq\f(GmA+mB,4π2)解析设A、B两个星球做圆周运动的半径分别为rA、rB,则rA+rB=L,对星球A:Geq\f(mAmB,L2)=mArAeq\f(4π2,T2),对星球B:Geq\f(mAmB,L2)=mBrBeq\f(4π2,T2),联立以上三式求得eq\f(L3,T2)=eq\f(GmA+mB,4π2).1。(“同步卫星"与“赤道物体”及近地卫星的比较)(多选)如图7所示,同步卫星与地心的距离为r,运行速率为v1,向心加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是()图7A.eq\f(a1,a2)=eq\f(r,R) B.eq\f(a1,a2)=(eq\f(R,r))2C.eq\f(v1,v2)=eq\f(r,R) D.eq\f(v1,v2)=eq\r(\f(R,r))答案AD解析地球同步卫星:轨道半径为r,运行速率为v1,向心加速度为a1;地球赤道上的物体:轨道半径为R,随地球自转的向心加速度为a2;以第一宇宙速度运行的卫星为近地卫星,其轨道半径为R.对于卫星,其共同特点是万有引力提供向心力,则Geq\f(Mm,r2)=meq\f(v2,r),故eq\f(v1,v2)=eq\r(\f(R,r)).对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,则a=ω2r,故eq\f(a1,a2)=eq\f(r,R)。2。(卫星的变轨问题)(多选)肩负着“落月”和“勘察”重任的“嫦娥三号"沿地月转移轨道直奔月球,如图8所示,在距月球表面100km的P点进行第一次制动后被月球捕获,进入椭圆轨道Ⅰ绕月飞行,之后,卫星在P点又经过第二次“刹车制动”,进入距月球表面100km的圆形工作轨道Ⅱ,绕月球做匀速圆周运动,在经过P点时会再一次“刹车制动”进入近月点距月球表面15公里的椭圆轨道Ⅲ,然后择机在近月点下降进行软着陆,则下列说法正确的是()图8A.“嫦娥三号”在轨道Ⅰ上运动的周期最长B。“嫦娥三号”在轨道Ⅲ上运动的周期最长C.“嫦娥三号”经过P点时在轨道Ⅱ上运动的线速度最大D。“嫦娥三号"经过P点时,在三个轨道上的加速度相等答案AD解析由于“嫦娥三号"在轨道Ⅰ上运动的半长轴大于在轨道Ⅱ上运动的半径,也大于轨道Ⅲ的半长轴,根据开普勒第三定律可知,“嫦娥三号"在各轨道上稳定运行时的周期关系为TⅠ>TⅡ>TⅢ,故A正确,B错误;“嫦娥三号"在由高轨道降到低轨道时,都要在P点进行“刹车制动”,所以经过P点时,在三个轨道上的线速度关系为vⅠ>vⅡ>vⅢ,所以C错误;由于“嫦娥三号”在P点时的加速度只与所受到的月球引力有关,故D正确。3.(双星问题)如图9所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动。现测得两颗星之间的距离为L,质量之比为m1∶m2=3∶2,下列说法中正确的是()图9A。m1、m2做圆周运动的线速度之比为3∶2B。m1、m2做圆周运动的角速度之比为3∶2C。m1做圆周运动的半径为eq\f(2,5)LD。m2做圆周运动的半径为eq\f(2,5)L答案C解析设双星m1、m2距转动中心O的距离分别为r1、r2,双星绕O点转动的角速度为ω,据万有引力定律和牛顿第二定律得Geq\f(m1m2,L2)=m1r1ω2=m2r2ω2,又r1+r2=L,m1∶m2=3∶2所以可解得r1=eq\f(2,5)L,r2=eq\f(3,5)Lm1、m2运动的线速度分别为v1=r1ω,v2=r2ω,故v1∶v2=r1∶r2=2∶3.综上所述,选项C正确。课时作业一、选择题(1~6为单选题,7~10为多选题)1.某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动.由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2之间的距离为r,已知万有引力常量为G,由此可求出S2的质量为()A.eq\f(4π2r2r-r1,GT2) B。eq\f(4π2r\o\al(

3,1),GT2)C。eq\f(4π2r3,GT2) D。eq\f(4π2r2r1,GT2)答案D解析设S1和S2的质量分别为m1、m2,对于S1有Geq\f(m1m2,r2)=m1eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2π,T)))2r1,得m2=eq\f(4π2r2r1,GT2)。2。两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是()A。质量大的天体线速度较大B.质量小的天体角速度较大C。两个天体的向心力大小一定相等D.两个天体的向心加速度大小一定相等答案C解析双星系统的结构是稳定的,故它们的角速度相等,故B项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C项正确,D错误;根据牛顿第二定律,有:Geq\f(m1m2,L2)=m1ω2r1=m2ω2r2其中:r1+r2=L,故r1=eq\f(m2,m1+m2)Lr2=eq\f(m1,m1+m2)L,故eq\f(v1,v2)=eq\f(r1,r2)=eq\f(m2,m1)故质量大的天体线速度较小,故A错误.3.如图1所示,地球赤道上的山丘e、近地卫星p和同步卫星q均在赤道平面上绕地心做匀速圆周运动。设e、p、q的线速度大小分别为v1、v2、v3,向心加速度分别为a1、a2、a3,则()图1A.v1>v2>v3 B.v1<v2<v3C.a1>a2>a3 D。a1<a3<a2答案D解析卫星的速度v=eq\r(\f(GM,r)),可见卫星距离地心越远,即r越大,则线速度越小,所以v3<v2。q是同步卫星,其角速度ω与地球自转角速度相同,所以其线速度v3=ωr3>v1=ωr1,选项A、B均错误.由Geq\f(Mm,r2)=man,得an=eq\f(GM,r2),同步卫星q的轨道半径大于近地卫星p的轨道半径,可知向心加速度a3<a2。由于同步卫星q的角速度ω与地球自转的角速度相同,即与地球赤道上的山丘e的角速度相同,但q的轨道半径大于e的轨道半径,根据a=ω2r可知a1<a3.根据以上分析可知,选项D正确,选项C错误。4.设地球半径为R,a为静止在地球赤道上的一个物体,b为一颗近地绕地球做匀速圆周运动的人造卫星,c为地球的一颗同步卫星,其轨道半径为r。下列说法中正确的是()A。a与c的线速度大小之比为eq\r(\f(r,R))B。a与c的线速度大小之比为eq\r(\f(R,r))C。b与c的周期之比为eq\r(\f(r,R))D.b与c的周期之比为eq\f(R,r)eq\r(\f(R,r))答案D解析物体a与同步卫星c角速度相等,由v=rω可得,二者线速度大小之比为eq\f(R,r),选项A、B均错误;而b、c均为卫星,由T=2πeq\r(\f(r3,GM))可得,二者周期之比为eq\f(R,r)eq\r(\f(R,r)),选项C错误,D正确.5.如图2所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M距地面200km,远地点N距地面340km.进入该轨道正常运行时,通过M、N点时的速率分别是v1和v2。当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v3,比较飞船在M、N、P三点正常运行时(不包括点火加速阶段)的速率大小和加速度大小,下列结论正确的是()图2A.v1>v3>v2,a1>a3>a2B。v1>v2>v3,a1>a2=a3C。v1>v2=v3,a1>a2>a3D.v1>v3>v2,a1>a2=a3答案D解析根据万有引力提供向心力,即eq\f(GMm,r2)=man得:an=eq\f(GM,r2),由图可知r1<r2=r3,所以a1>a2=a3;当某次飞船通过N点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340km的圆形轨道,所以v3>v2,根据eq\f(GMm,r2)=eq\f(mv2,r)得:v=eq\r(\f(GM,r)),又因为r1<r3,所以v1>v3,故v1>v3>v2.故选D。6。如图3,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动。据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动。以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是()图3A.a2>a3〉a1 B.a2〉a1>a3C.a3>a1〉a2 D。a3>a2〉a1答案D7。如图4,航天飞机在完成太空任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的近地点,关于航天飞机的运动,下列说法中正确的有()图4A.在轨道Ⅱ上经过A的速度小于经过B的速度B。在轨道Ⅱ上经过A的速度小于在轨道Ⅰ上经过A的速度C。在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的向心加速度小于在轨道Ⅰ上经过A的向心加速度答案ABC8。我国发射的“北斗系列”卫星中同步卫星到地心距离为r,运行速率为v1,向心加速度为a1;在地球赤道上的观测站的向心加速度为a2,近地卫星做圆周运动的速率为v2,向心加速度为a3,地球的半径为R,则下列比值正确的是()A.eq\f(a1,a2)=eq\f(r,R)B。eq\f(a2,a3)=eq\f(R3,r3)C。eq\f(a1,a3)=eq\f(r,R)D.eq\f(a1,a2)=eq\f(R2,r2)答案AB解析由于在地球赤道上的观测站的运动和同步卫星的运动具有相同的角速度,根据an=rω2可知eq\f(a1,a2)=eq\f(r,R),A项正确,D项错误;再根据近地卫星做圆周运动的向心加速度为a3,由万有引力定律和牛顿第二定律F=eq\f(GMm,r2)=man可知eq\f(a1,a3)=eq\f(R2,r2),由eq\f(a1,a3)=eq\f(R2,r2),eq\f(a1,a2)=eq\f(r,R)知eq\f(a2,a3)=eq\f(R3,r3),因此B项正确,C项错误.9。宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不会因为万有引力的作用而吸引到一起。如图5所示,某双星系统中A、B两颗天体绕O点做匀速圆周运动,它们的轨道半径之比rA∶rB=1∶2,则两颗天体的()图5A。质量之比mA∶mB=2∶1B。角速度之比ωA∶ωB=1∶2C。线速度大小之比vA∶vB=1∶2D.向心力大小之比FA∶FB=2∶1答案AC解析双星都绕O点做匀速圆周运动,由两者之间的万有引力提供向心力,角速度相等,设为ω.根据牛顿第二定律,对A星:Geq\f(mAmB,L2)=mAω2rA ①对B星:Geq\f(mAmB,L2)=mBω2rB ②联立①②得mA∶mB=rB∶rA=2∶1。根据双星的条件有:角速度之比ωA∶ωB=1∶1,由v=ωr得线速度大小之比vA∶vB=rA∶rB=1∶2,向心力大小之比FA∶FB=1∶1,选项A、C正确,B、D错误.10.如图6所示,a、b、c是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是()A.b、c的线速度大小相等,且大于a的线速度B。a加速可能会追上bC。c加速可追上同一轨道上的b,b减速可等到同一轨道上的cD.a卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,图6则其线速度将变大答案BD解析因为b、c在同一轨道上运行,故其线速度大小、加速度大小均相等.又由b、c轨道半径大于a轨道半径,由v=eq\r(\f(GM,r))可知,vb=vc<va,故选项A错;当a加速后,会做离心运动,轨道会变成椭圆,若椭圆与b所在轨道相切(或相交),且a、b同时来到切(或交)点时,a就追上了b,故选项B正确;当c加速时,c受的万有引力F<meq\f(v\o\al(

2,c),rc),故它将偏离原轨道,做离心运动,当b减速时,b受的万有引力F>meq\f(v\o\al(

2,b),rb),它将偏离原轨道,做向心运动,所以无论如何c也追不上b,b也等不到c,故选项C错;对a卫星,当它的轨道半径缓慢减小时,由v=eq\r(\f(GM,r))可知,r减小时,v逐渐增大,故选项D正确.二、非选择题11。中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论