数字积分法课件_第1页
数字积分法课件_第2页
数字积分法课件_第3页
数字积分法课件_第4页
数字积分法课件_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二、数字积分法插补数字积分法又称数字微分分析器(DigitalDifferentialAnalyzer,简称DDA)。采用该方法进行插补,具有运算速度快,逻辑功能强,脉冲分配均匀等特点,且只输入很少的数据,就能加工出直线、圆弧等较复杂的曲线轨迹,精度也能满足要求。因此,该方法在数控系统中得到广泛的应用。二、数字积分法插补数字积分法又称数字微分分析器(Digita1(一)数字积分的基本原理如图:从时刻t=0到t,函数Y=f(t)曲线所包围的面积可表示为:S=∫f(t)dt若将0~t的时间划分成时间间隔为Δt的有限区间,当Δt足够小时,可得公式:S=∫f(t)dt=∑YiΔt即积分运算可用一系列微小矩形面积累加求和来近似。TOYY=f(t)ΔtYott00ti=0n-1(一)数字积分的基本原理TOYY=f(t)ΔtYott02若Δt取最小基本单位“1”,则上式可简化为:S=∑Yi(累加求和公式或矩形公式)这种累加求和运算,即积分运算可用数字积分器来实现,n-1i=0被积函数寄存器+累加器(余数寄存器)ΔtΔY存放Y值若Δt取最小基本单位“1”,则上式可简化为:n-1i=0被积3若求曲线与坐标轴所包围的面积,求解过程如下:被积函数寄存器用以存放Y值,每当Δt出现一次,被积函数寄存器中的Y值就与累加器中的数值相加一次,并将累加结果存于累加器中,如果累加器的容量为一个单位面积,则在累加过程中,每超过一个单位面积,累加器就有溢出。当累加次数达到累加器的容量时,所产生的溢出总数就是要求的总面积,即积分值。被积函数寄存器+累加器(余数寄存器)ΔtΔY存放Y值若求曲线与坐标轴所包围的面积,求解过程如下:被积函数寄存器+4被积函数寄存器与累加器相加的计算方法:例:被积函数寄存器与累加器均为3位寄存器,被积函数为5,求累加过程。101101101101+)000

+)101

+)010

+)111101010111100101101101101+)100

+)001

+)110

+)011001110011000经过2=8次累加完成积分运算,因为有5次溢出,所以积分值等于5。①①①①①3被积函数寄存器与累加器相加的计算方法:①①①①①35(二)数字积分直线插补如图:直线段OA,起点位于原点,终点为A(Xe,Ye),东电沿X、Y坐标移动的速度为Vx、Vy,则动点沿X、Y坐标移动的微小增量为:ΔX=VxΔtΔY=VyΔt若动点沿OA匀速移动,V、Vx、Vy均为常数,则有:

V

Vx

VyOAXeYe成立。XOYA(Xe,Ye)VxVyV===K(二)数字积分直线插补XOYA(Xe,Ye)VxVyV==6因而可以得到坐标微小位移增量为:ΔX=VxΔt=KXeΔtΔY=VyΔt=KYeΔt所以,可以把动点从原点走向终点的过程看作X、Y坐标每经过一个单位时间间隔以KXe、KYe进行累加的过程,则可得直线积分插补近似表达式为:X=∑(KXe)ΔtY=∑(KYe)ΔtXOYA(Xe,Ye)VxVyVi=1mi=1m因而可以得到坐标微小位移增量为:XOYA(Xe,Ye)VxV7由此可以得到直线插补的数字积分插补器:JVx(KXe)(被积函数寄存器)+JRx(累加器)JRy(累加器)JVy(KYe)(被积函数寄存器)+ΔtΔXX轴溢出脉冲Y轴溢出脉冲ΔY由此可以得到直线插补的数字积分插补器:JVx(KXe)(8设经过m次累加,X、Y坐标分别达到终点,则有:X=∑(KXe)Δt=KmXe=XeY=∑(KYe)Δt=KmYe=Ye由该式可知:mK=1,即m=1/K这样,经过m次累加后,X、Y坐标分别到达终点,而溢出脉冲总数即为:X=XeY=YeXOYA(Xe,Ye)VxVyVmmi=1i=1设经过m次累加,X、Y坐标分别达到终点,则有:XOYA(Xe9确定K的取值:根据每次增量ΔX、ΔY不大于1,以保证每次分配的进给脉冲不超过1,即需满足:ΔX=KXe≤1ΔY=KYe≤1其中Xe、Ye的最大允许值受被积函数寄存器容量的限制。假定寄存器有n位,则Xe、Ye的最大允许值为2–1。若取K=1/2、则必定满足:KXe=2–1/2<1KYe=2–1/2<1由此可定,动点从原点到达终点的累加次数为:m=1/K=2nnnnnnn确定K的取值:nnnnnnn10例:插补第一象限直线OA,起点为O(0,0),终点为A(5,3)。取被积函数寄存器分别为JVx,JVy,余数寄存器分别为JRx、JRy,终点计数器为

JE,且都是三位二进制寄存器。试写出插补计算过程并绘制轨迹。XOY12345123A(5,3)例:插补第一象限直线OA,起点为O(0,0),终点11插补计算过程如下累加次数(Δt)X积分器JVxJRx溢出ΔXY积分器JVyJRy溢出ΔY终点计数器JE备注012345678101000011000初始状态101101000101101101101101101101011011011011011011011011011111第一次累加0101110JRx有进位,ΔX溢出1101110011101JRy有进位,ΔY溢出1001100100ΔX溢出0011111011ΔX溢出1100101010ΔY溢出0111101001ΔX溢出00010001000ΔX,ΔY同时溢出JE=0,插补结束插补计算过程如下累加X积分器JVxJRx溢出Y积分器J12加工轨迹如下:XOY12345123A(5,3)加工轨迹如下:XOY12345123A(5,3)13作业:插补第一象限直线OA,起点为O(0,0),终点为A(2,6)。取被积函数寄存器分别为JVx,JVy,余数寄存器分别为JRx、JRy,终点计数器为

JE,且都是三位二进制寄存器。试写出插补计算过程并绘制轨迹。XOY12345A(2,6)612作业:XOY12345A(2,6)61214插补计算过程如下:累加次数(Δt)X积分器JVxJRx溢出ΔXY积分器JVyJRy溢出ΔY终点计数器JE备注012345678010000110000初始状态010010000010010010010010010010110110110110110110110110110111第一次累加100100JRy有进位,ΔY溢出1101100101101JRy有进位,ΔY溢出0001000100ΔX,ΔY同时溢出010110011ΔX,ΔY同时无溢出1001001010ΔY溢出110010001ΔY溢出00010001000ΔX,ΔY同时溢出JE=0,插补结束111插补计算过程如下:累加X积分器JVxJRx溢出Y积分器15加工轨迹如下:XOY12345A(2,6)612加工轨迹如下:XOY12345A(2,6)61216(三)数字积分圆弧插补如图所示,设加工半径为R的第一象限逆时针圆弧AB,坐标原点定在圆心上,A(Xo,Yo)为圆弧起点,B(Xe,Ye)为圆弧终点,Pi(Xi,Yi)为加工动点。XOYA(Xo,Yo)B(Xe,Ye)Pi(Xi,Yi)(三)数字积分圆弧插补XOYA(Xo,Yo)B(Xe,Ye)17

如图所示,可以得到:V

Vx

VyRYiXi即Vx=KYi,Vy=KXi因而可以得到坐标微小位移增量为:ΔX=VxΔt=KYiΔtΔY=VyΔt=KXiΔt设Δt=1,K=1/2则有:

XOYA(Xo,Yo)B(Xe,Ye)Pi(Xi,Yi)RVVxVy===KnX=1/2i=1m∑YiY=1/2i=1m∑Xinn如图所示,可以得到:XOYA(Xo,Yo)B(Xe,Ye)18由可看出,用DDA法进行圆弧插补时,是对加工动点的坐标Xi和Yi的值分别进行累加,若积分累加器有溢出,则相应坐标轴进给一步,则圆弧积分插补器如图所示:X=1/2i=1m∑YiY=1/2i=1m∑Xinn由X=1/2i=1m∑YiY=1/2i=1m∑Xinn19圆弧积分插补器:JVx(Y)(被积函数寄存器)+JRy(累加器)JRx(累加器)JVy(X)(被积函数寄存器)+ΔtΔXX轴溢出脉冲Y轴溢出脉冲ΔY圆弧积分插补器:JVx(Y)(被积函数寄存器)+JRy(20例:设圆弧AB为第一象限逆圆弧,起点A(5,0),终点为B(0,5),用DDA法加工圆弧AB。XOY1234512345例:设圆弧AB为第一象限逆圆弧,起点A(5,0),终点为B(21插补计算过程如下:累加次数(Δt)X积分器JVx(Yi)JRy溢出ΔXY积分器Jvy(Xi)JRx溢出ΔYX终点计数器

备注012345000000101101初始状态000000000000001001001010010011101101101101101101101第一次累加000010ΔY溢出,修正Yi100001101111100ΔX,ΔY无溢出010100011ΔY溢出修正Yi100001010ΔY溢出修正Yi11Y终点计数器

1011011011011101插补计算过程如下:累加X积分器JVxJRy溢出Y积分器22插补计算过程如下:累加次数(Δt)X积分器JVx(Yi)JRy溢出ΔXY积分器Jvy(Xi)JRx溢出ΔYX终点计数器

备注67911011111101010无溢出011010110100100100101101101010101100100011011011001ΔXΔY同时溢出,修正Xi,Yi010011011000ΔXΔY同时溢出,Y到终点停止迭代100ΔX溢出修正XiY终点计数器

101100010118110100100111无溢出11101110110111插补计算过程如下:累加X积分器JVxJRy溢出Y积分器23插补计算过程如下:累加次数(Δt)X积分器JVx(Yi)JRy溢出ΔXY积分器Jvy(Xi)JRx溢出ΔYX终点计数器

备注12101001010ΔX溢出修正Xi101101001000Y终点计数器

00114011000001113110001001无溢出1ΔX溢出修正XiX到达终点。结束插补。插补计算过程如下:累加X积分器JVxJRy溢出Y积分器24二、数字积分法插补数字积分法又称数字微分分析器(DigitalDifferentialAnalyzer,简称DDA)。采用该方法进行插补,具有运算速度快,逻辑功能强,脉冲分配均匀等特点,且只输入很少的数据,就能加工出直线、圆弧等较复杂的曲线轨迹,精度也能满足要求。因此,该方法在数控系统中得到广泛的应用。二、数字积分法插补数字积分法又称数字微分分析器(Digita25(一)数字积分的基本原理如图:从时刻t=0到t,函数Y=f(t)曲线所包围的面积可表示为:S=∫f(t)dt若将0~t的时间划分成时间间隔为Δt的有限区间,当Δt足够小时,可得公式:S=∫f(t)dt=∑YiΔt即积分运算可用一系列微小矩形面积累加求和来近似。TOYY=f(t)ΔtYott00ti=0n-1(一)数字积分的基本原理TOYY=f(t)ΔtYott026若Δt取最小基本单位“1”,则上式可简化为:S=∑Yi(累加求和公式或矩形公式)这种累加求和运算,即积分运算可用数字积分器来实现,n-1i=0被积函数寄存器+累加器(余数寄存器)ΔtΔY存放Y值若Δt取最小基本单位“1”,则上式可简化为:n-1i=0被积27若求曲线与坐标轴所包围的面积,求解过程如下:被积函数寄存器用以存放Y值,每当Δt出现一次,被积函数寄存器中的Y值就与累加器中的数值相加一次,并将累加结果存于累加器中,如果累加器的容量为一个单位面积,则在累加过程中,每超过一个单位面积,累加器就有溢出。当累加次数达到累加器的容量时,所产生的溢出总数就是要求的总面积,即积分值。被积函数寄存器+累加器(余数寄存器)ΔtΔY存放Y值若求曲线与坐标轴所包围的面积,求解过程如下:被积函数寄存器+28被积函数寄存器与累加器相加的计算方法:例:被积函数寄存器与累加器均为3位寄存器,被积函数为5,求累加过程。101101101101+)000

+)101

+)010

+)111101010111100101101101101+)100

+)001

+)110

+)011001110011000经过2=8次累加完成积分运算,因为有5次溢出,所以积分值等于5。①①①①①3被积函数寄存器与累加器相加的计算方法:①①①①①329(二)数字积分直线插补如图:直线段OA,起点位于原点,终点为A(Xe,Ye),东电沿X、Y坐标移动的速度为Vx、Vy,则动点沿X、Y坐标移动的微小增量为:ΔX=VxΔtΔY=VyΔt若动点沿OA匀速移动,V、Vx、Vy均为常数,则有:

V

Vx

VyOAXeYe成立。XOYA(Xe,Ye)VxVyV===K(二)数字积分直线插补XOYA(Xe,Ye)VxVyV==30因而可以得到坐标微小位移增量为:ΔX=VxΔt=KXeΔtΔY=VyΔt=KYeΔt所以,可以把动点从原点走向终点的过程看作X、Y坐标每经过一个单位时间间隔以KXe、KYe进行累加的过程,则可得直线积分插补近似表达式为:X=∑(KXe)ΔtY=∑(KYe)ΔtXOYA(Xe,Ye)VxVyVi=1mi=1m因而可以得到坐标微小位移增量为:XOYA(Xe,Ye)VxV31由此可以得到直线插补的数字积分插补器:JVx(KXe)(被积函数寄存器)+JRx(累加器)JRy(累加器)JVy(KYe)(被积函数寄存器)+ΔtΔXX轴溢出脉冲Y轴溢出脉冲ΔY由此可以得到直线插补的数字积分插补器:JVx(KXe)(32设经过m次累加,X、Y坐标分别达到终点,则有:X=∑(KXe)Δt=KmXe=XeY=∑(KYe)Δt=KmYe=Ye由该式可知:mK=1,即m=1/K这样,经过m次累加后,X、Y坐标分别到达终点,而溢出脉冲总数即为:X=XeY=YeXOYA(Xe,Ye)VxVyVmmi=1i=1设经过m次累加,X、Y坐标分别达到终点,则有:XOYA(Xe33确定K的取值:根据每次增量ΔX、ΔY不大于1,以保证每次分配的进给脉冲不超过1,即需满足:ΔX=KXe≤1ΔY=KYe≤1其中Xe、Ye的最大允许值受被积函数寄存器容量的限制。假定寄存器有n位,则Xe、Ye的最大允许值为2–1。若取K=1/2、则必定满足:KXe=2–1/2<1KYe=2–1/2<1由此可定,动点从原点到达终点的累加次数为:m=1/K=2nnnnnnn确定K的取值:nnnnnnn34例:插补第一象限直线OA,起点为O(0,0),终点为A(5,3)。取被积函数寄存器分别为JVx,JVy,余数寄存器分别为JRx、JRy,终点计数器为

JE,且都是三位二进制寄存器。试写出插补计算过程并绘制轨迹。XOY12345123A(5,3)例:插补第一象限直线OA,起点为O(0,0),终点35插补计算过程如下累加次数(Δt)X积分器JVxJRx溢出ΔXY积分器JVyJRy溢出ΔY终点计数器JE备注012345678101000011000初始状态101101000101101101101101101101011011011011011011011011011111第一次累加0101110JRx有进位,ΔX溢出1101110011101JRy有进位,ΔY溢出1001100100ΔX溢出0011111011ΔX溢出1100101010ΔY溢出0111101001ΔX溢出00010001000ΔX,ΔY同时溢出JE=0,插补结束插补计算过程如下累加X积分器JVxJRx溢出Y积分器J36加工轨迹如下:XOY12345123A(5,3)加工轨迹如下:XOY12345123A(5,3)37作业:插补第一象限直线OA,起点为O(0,0),终点为A(2,6)。取被积函数寄存器分别为JVx,JVy,余数寄存器分别为JRx、JRy,终点计数器为

JE,且都是三位二进制寄存器。试写出插补计算过程并绘制轨迹。XOY12345A(2,6)612作业:XOY12345A(2,6)61238插补计算过程如下:累加次数(Δt)X积分器JVxJRx溢出ΔXY积分器JVyJRy溢出ΔY终点计数器JE备注012345678010000110000初始状态010010000010010010010010010010110110110110110110110110110111第一次累加100100JRy有进位,ΔY溢出1101100101101JRy有进位,ΔY溢出0001000100ΔX,ΔY同时溢出010110011ΔX,ΔY同时无溢出1001001010ΔY溢出110010001ΔY溢出00010001000ΔX,ΔY同时溢出JE=0,插补结束111插补计算过程如下:累加X积分器JVxJRx溢出Y积分器39加工轨迹如下:XOY12345A(2,6)612加工轨迹如下:XOY12345A(2,6)61240(三)数字积分圆弧插补如图所示,设加工半径为R的第一象限逆时针圆弧AB,坐标原点定在圆心上,A(Xo,Yo)为圆弧起点,B(Xe,Ye)为圆弧终点,Pi(Xi,Yi)为加工动点。XOYA(Xo,Yo)B(Xe,Ye)Pi(Xi,Yi)(三)数字积分圆弧插补XOYA(Xo,Yo)B(Xe,Ye)41

如图所示,可以得到:V

Vx

VyRYiXi即Vx=KYi,Vy=KXi因而可以得到坐标微小位移增量为:ΔX=VxΔt=KYiΔtΔY=VyΔt=KXiΔt设Δt=1,K=1/2则有:

XOYA(Xo,Yo)B(Xe,Ye)Pi(Xi,Yi)RVVxVy===KnX=1/2i=1m∑YiY=1/2i=1m∑Xinn如图所示,可以得到:XOYA(Xo,Yo)B(Xe,Ye)42由可看出,用DDA法进行圆弧插补时,是对加工动点的坐标Xi和Yi的值分别进行累加,若积分累加器有溢出,则相应坐标轴进给一步,则圆弧积分插补器如图所示:X=1/2i=1m∑YiY=1/2i=1m∑Xinn由X=1/2i=1m∑YiY=1/2i=1m∑Xinn43圆弧积分插补器:JVx(Y)(被积函数寄存器)+JRy(累加器)JRx(累加器)JVy

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论