2023届甘肃省兰州市名校数学八年级第一学期期末学业水平测试试题含解析_第1页
2023届甘肃省兰州市名校数学八年级第一学期期末学业水平测试试题含解析_第2页
2023届甘肃省兰州市名校数学八年级第一学期期末学业水平测试试题含解析_第3页
2023届甘肃省兰州市名校数学八年级第一学期期末学业水平测试试题含解析_第4页
2023届甘肃省兰州市名校数学八年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列命题:①若则;②等边三角形的三个内角都是;③线段垂直平分线上的点到线段两端的距离相等.以上命题的逆命题是真命题的有()A.个 B.个 C.个 D.个2.如图,在直角△ABC中,,AB=AC,点D为BC中点,直角绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④ B.②③④ C.①②③ D.①②③④3.图书馆的标志是浓缩了图书馆文化的符号,下列图书馆标志中,不是轴对称的是()A. B.C. D.4.把19547精确到千位的近似数是()A. B. C. D.5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G6.如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.57.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB//CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.已知当时,分式的值为0,当时,分式无意义,则的值为()A.4 B.-4 C.0 D.9.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A. B. C.4 D.710.化简的结果是()A. B. C. D.二、填空题(每小题3分,共24分)11.若规定用符号表示一个实数的整数部分,例如按此规定._______________________.12.已知关于的方程的解是正数,则的取值范围为__________.13.化简:_____.14.如图:点在上,、均是等边三角形,、分别与、交于点、,则下列结论①②③为等边三角形④正确的是______(填出所有正确的序号)15.如果一个多边形的内角和为1260º,那么从这个多边形的一个顶点引对角线,可以把这个多边形分成_______________个三角形.16.如图,四边形ABCD是正方形,AE⊥BE于点E,且AE=3,BE=4,则阴影部分的面积是_____.17.当x_______时,分式无意义,当x=_________时,分式的值是0.18.如图,AB=AC=6,,BD⊥AC交CA的延长线于点D,则BD=___________.三、解答题(共66分)19.(10分)如图在四边形ABCD中,AD=1,AB=BC=2,DC=3,AD⊥AB,求20.(6分)如图,以的边和为边向外作等边和等边,连接、.求证:.21.(6分)同学们,我们以前学过完全平方公式,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如,,下面我们观察:,反之,,∴,∴求:(1);(2);(3)若,则m、n与a、b的关系是什么?并说明理由.22.(8分)一张方桌由一个桌面和四条桌脚组成,如果一立方米木材可制作方桌的桌面50个,或制作桌腿300条,现有5立方米木料,那么用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张.23.(8分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)长为的线段PQ,其中P、Q都在格点上;(2)面积为13的正方形ABCD,其中A、B、C、D都在格点上.24.(8分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等量关系,并加以证明.25.(10分)因式分解:(1)4x2-9(2)-3x2+6xy-3y226.(10分)已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先写出各命题的逆命题,然后根据绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理逐一判断即可.【详解】解:①“若则”的逆命题为“若,则”,当,则,故①的逆命题为假命题;②“等边三角形的三个内角都是”的逆命题为“三个内角都是60°的三角形是等边三角形”,该命题为真命题,故②的逆命题为真命题;③“线段垂直平分线上的点到线段两端的距离相等”的逆命题为“到线段两端点距离相等的点在这条线段的垂直平分线上”,该命题为真命题,故②的逆命题为真命题;综上:有2个符合题意故选B.【点睛】此题考查的是写一个命题的逆命题、绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理,掌握绝对值的性质、等边三角形的判定定理、垂直平分线的判定定理是解决此题的关键.2、C【分析】根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.【详解】∵∠B=45°,AB=AC,

∴△ABC是等腰直角三角形,

∵点D为BC中点,

∴AD=CD=BD,AD⊥BC,∠CAD=45°,

∴∠CAD=∠B,

∵∠MDN是直角,

∴∠ADF+∠ADE=90°,

∵∠BDE+∠ADE=∠ADB=90°,

∴∠ADF=∠BDE,

在△BDE和△ADF中,,

∴△BDE≌△ADF(ASA),故③正确;

∴DE=DF、BE=AF,

又∵∠MDN是直角,

∴△DEF是等腰直角三角形,故①正确;

∵AE=AB-BE,CF=AC-AF,

∴AE=CF,故②正确;

∵BE+CF=AF+AE>EF,

∴BE+CF>EF,

故④错误;

综上所述,正确的结论有①②③;

故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质、三角形三边的关系;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.3、A【分析】根据轴对称图形的概念解答即可.【详解】A、不是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、是轴对称图形;故选A.【点睛】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,熟记轴对称图形的定义是解题关键.4、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【详解】19547=≈.故选C.【点睛】本题主要考查求近似数。掌握四舍五入法求近似数,是解题的关键.5、A【分析】三角形的重心即为三角形中线的交点,故重心一定在中线上,即可得出答案.【详解】解:如图由勾股定理可得:AN=BN=,BM=CM=∴N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.6、B【分析】分析已知和所求,先由CE∥BF,根据平行线性质得出内错角∠ECO=∠FBO,再由对顶角∠EOC=∠FOB和OE=OF,根据三角形的判定即可判定两个三角形全等;由上分析所得三角形全等,根据全等三角形的性质可得对应边相等,再根据三角形的判定定理即可判定另两对三角形是否全等.【详解】解:①∵CE∥BF,∴∠OEC=∠OFB,又∵OE=OF,∠COE=∠BOF,∴△OCE≌△OBF,∴OC=OB,CE=BF;②∵AB∥CD,∴∠ABO=∠DCO,∠AOB=∠COD,又∵OB=OC,∴△AOB≌△DOC;③∵AB∥CD,CE∥BF,∴∠D=∠A,∠CED=∠COD,又∵CE=BF,∴△CDE≌△BAF.故选B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、C【分析】根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.【详解】∵l是四边形ABCD的对称轴,

∴∠CAD=∠BAC,∠ACD=∠ACB,

∵AD∥BC,

∴∠CAD=∠ACB,

∴∠CAD=∠ACB=∠BAC=∠ACD,

∴AB∥CD,AB=BC,故①②正确;

又∵l是四边形ABCD的对称轴,

∴AB=AD,BC=CD,

∴AB=BC=CD=AD,

∴四边形ABCD是菱形,

∴AO=OC,故④正确,

∵菱形ABCD不一定是正方形,

∴AB⊥BC不成立,故③错误,

综上所述,正确的结论有①②④共3个.

故选:C.8、B【分析】根据题意可得,当时,分子,当时,分母,从而可以求得、的值,本题得以解决.【详解】解:当时,分式的值为0,当时,分式无意义,,解得,,,故选B.【点睛】本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出、的值.9、A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC=,在Rt△ABC中,根据勾股定理,得AC=.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.10、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.二、填空题(每小题3分,共24分)11、1【分析】先求出取值范围,从而求出其整数部分,即可得出结论.【详解】解:∵∴∴的整数部分为1∴1故答案为:1.【点睛】此题考查的是求无理数的整数部分,掌握实数比较大小的方法是解决此题的关键.12、且【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【详解】解关于x的方程得x=m+6,∵x−2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>−6且m≠−1.故答案为:m>−6且m≠−1.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.13、1【分析】根据算数平方根和立方根的运算法则计算即可.【详解】解:故答案为1.【点睛】本题主要考查了算数平方根和立方根的计算,熟记运算法则是解题的关键.14、①②③④【分析】利用等边三角形的性质得CA=CD,∠ACD=60°,CE=CB,∠BCE=60°,所以∠DCE=60°,∠ACE=∠BCD=120°,则利用“SAS”可判定△ACE≌△DCB,所以AE=DB,∠CAE=∠CDB,则可对①进行判定;再证明△ACM≌△DCN得到CM=CN,则可对②进行判定;然后证明△CMN为等边三角形得到∠CMN=60°,则可对③④进行判定.【详解】解:∵△DAC、△EBC均是等边三角形,∴CA=CD,∠ACD=60°,CE=CB,∠BCE=60°,∴∠DCE=60°,∠ACE=∠BCD=120°,在△ACE和△DCB中,∴△ACE≌△DCB(SAS),∴AE=DB,所以①正确;∵△ACE≌△DCB,∴∠MAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠MCA=∠DCN=60°,在△ACM和△DCN中,∴△ACM≌△DCN(ASA),∴CM=CN,所以②正确;∵CM=CN,∠MCN=60°,∴△CMN为等边三角形,故③正确,∴∠CMN=60°,∴∠CMN=∠MCA,∴MN∥BC,所以④正确,故答案为:①②③④.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件,也考查了等边三角形的判定与性质.15、1【分析】首先根据多边形内角和公式可得多边形的边数,再计算分成三角形的个数.【详解】解:设此多边形的边数为,由题意得:,

解得;,

从这个多边形的一个顶点引对角线,可以把这个多边形分成的三角形个数:9-2=1,

故答案为:1.【点睛】此题主要考查了多边形的内角,关键是掌握多边形的内角和公式.16、1【分析】由题意可得△ABE是直角三角形,根据勾股定理求出其斜边长度,即正方形边长,再根据割补法求阴影面积即可.【详解】∵AE⊥BE,∴△ABE是直角三角形,∵AE=3,BE=4,∴AB===5,∴阴影部分的面积=S正方形ABCD﹣S△ABE=52﹣×3×4=25﹣6=1.故答案为:1.【点睛】本题考查了勾股定理的简单应用,以及割补法求阴影面积,熟练掌握和运用勾股定理是解答关键.17、x=-2x=2【分析】根据分式值为零的条件是分子等于零且分母不等于零,可得出x的值.【详解】分式无意义,即x+2=0,∴x=-2,分式的值是0,∴可得4−x=0,x+2≠0,解得:x=2.故答案为x=-2,x=2.【点睛】此题考查分式的值为零的条件和无意义的情况,解题关键在于掌握其定义.18、3【分析】由等腰三角形的性质得:利用含的直角三角形的性质可得答案.【详解】解:AB=AC=6,,BD⊥AC,故答案为:【点睛】本题考查的是等腰三角形与含的直角三角形的性质,三角形的外角的性质,掌握这三个性质是解题的关键.三、解答题(共66分)19、【解析】连接BD,则可以计算△ABD的面积,根据AB、BD可以计算BD的长,根据CD,BC,BD可以判定△BCD为直角三角形,根据BC,BD可以计算△BCD的面积,四边形ABCD的面积为△ABD和△BCD面积之和.【详解】解:连接BD,在直角△ABD中,AC为斜边,且AB=BC=2,AD=1则BD==,,∴BC2+BD2=CD2,即△ACD为直角三角形,且∠DAC=90°,四边形ABCD的面积=S△ABD+S△BCD=AB×AD+BD×BC=.=1+答:四边形ABCD的面积为1+.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了勾股定理的逆定理的运用,考查了直角三角形面积计算,本题中求证△BCD是直角三角形是解题的关键.20、见解析【分析】根据等边三角形的性质可得边长相等,角度为60°,由此得出∠EAB=∠CAD,即可证明△EAB≌△CAD,则BE=CD.【详解】证明:∵△ACE和△ABD都是等边三角形∴AC=AE,AD=AB,∠EAC=∠DAB=60°∴∠EAC+∠BAC=∠DAB+∠BAC,即∠EAB=∠CAD.∴△EAB≌△CAD(SAS)∴【点睛】本题考查三角形全等的判定和性质、全等三角形的性质,关键在于结合图形利用性质得到所需条件.21、(1);(2);(3),,理由见解析【分析】(1)将3拆分为2+1,再根据完全平方公式和二次根式化简即可求解;

(2)将4拆分为3+1,再根据完全平方公式和二次根式化简即可求解;

(3)利用二次根式的性质结合完全平方公式直接化简得出即可.【详解】解:(1)==;(2);(3)m+n=a,mn=b.理由:∵,∴,∴m+n+2=a+2,∴m+n=a,mn=b【点睛】此题主要考查了二次根式的性质与化简,正确理解二次根式化简的意义是解题关键.22、桌面3立方米,桌腿2立方米,方桌1张.【分析】本题的等量关系为:做桌面的木料+做桌腿的木料=5;桌面数量×4=桌腿数量.【详解】解:桌面用木料x立方米,桌腿用木料y立方米,则解得50x=1.答:桌面3立方米,桌腿2立方米,方桌1张.【点睛】本题考查二元一次方程组的应用.23、(1)见解析;(2)见解析.【分析】(1)由勾股定理可知当直角边为1和3时,则斜边为,由此可得线段PQ;(2)由勾股定理可知当直角边为2和3时,则斜边为,把斜边作为正方形的边长即可得到面积为13的正方形ABCD.【详解】(1)(2)如图所示:【点睛】本题考查了勾股定理的运用,本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.24、(1)见解析;(2)见解析;(3)DE=BE-AD,证明见解析【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;

(2)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,从而有DE=CE-CD=AD-BE;

(3)与(1)证法类似可证出∠DAC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论