版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter14
Polyacounting
1Chapter14
Polyacounting1SummaryPermutationandsymmetrygroupsBurnsidetheoremPolyacountingformulaAssignments2SummaryPermutationandsymmetrColoringaregulartetrahedronSupposetocolorthefourcornersofaregulartetrahedronwithtwocolors,redandblue,howmanydifferentcoloringsarethere?Casea:thetetrahedronisfixedinspace,theneachcornerisdistinguishedfromtheothersbyitsposition,anditmatterswhichcoloreachcornergets.Thusall16colorsaredifferent.3ColoringaregulartetrahedronCaseb:thetetrahedronareallowedtomovearound.Inotherwords,thecornersareindistinguishable.Theonlywaytwocoloringscanbedistinguishedfromoneanotherisbythenumberofcornersofeachcolor.Thustherearetotal5differentcolorings.4Caseb:thetetrahedronarealColoringasquareSupposewecolorthe4cornersofasquarewiththecolorsredandblue.Howmanydifferentcoloringsarethere?5ColoringasquareSupposewecEquivalentandinequivalentcoloringsForboththetetrahedronandsquare,ifallowedtofreelymovearound,the16waystocoloritscornersarepartitionedintopartsinsuchawaythattwocoloringsinthesamepartareregardedasthesame(thecoloringsareequivalent),andtwocoloringsindifferentpartsareregardedasdifferent(thecoloringsareinequivalent).Thenumberofinequivalentcoloringsisthusthenumberofdifferentparts.6EquivalentandinequivalentcoPermutationandsymmetrygroups7PermutationandsymmetrygroupPermutationandfunctionLetXbeafiniteset.Withoutlossofgenerality,wetakeXtobetheset{1,2,3,…,n}.Eachpermutationi1,i2,i3,…,inofXcanbeviewedasaone-to-onefunctionfromXtoitselfdefinedbyf:X→X,wheref(1)=i1,f(2)=i2,….,f(n)=in.Apermutationisdenotedbya2-by-narrayasfollows:8PermutationandfunctionLetXExampleThe3!=6permutationsof{1,2,3}regardedasfunctionsare9ExampleThe3!=6permutationsCompositionofpermutationsLetaretwopermutationsof{1,2,…,n}.Thentheircomposition,intheorderffollowedbyg,isthepermutationwhere(g。f)(k)=g(f(k))=jik.10CompositionofpermutationsLetBinaryoperationWedenotethesetofalln!permutationsof{1,2,…,n}bySn.CompositionoffunctionsdefinesabinaryoperationonSn:iffandgareinSn,theng。fisalsoinSn.11BinaryoperationWedenotetheExampleLetfandgbethepermutationsinS4definedbyThen,(g。f)(1)=3,(g。f)(2)=4,(g。f)(3)=1,(g。f)(4)=2,andthus12ExampleLetfandgbetheperLawsoncompositionoperationAssociativelaw:(f。g)。h=f。(g。h))Commutativelaw:f。g≠g。fIdentitypermutation:l(k)=kforallk=1,2,…,n;Inversef-1:f-1(k)=sprovidedf(s)=k.f。f-1=f-1
。f=l.Compositionwithitself:f1=f,f2=f。f,…,fk=f。f。f。…。f(kf’s)13LawsoncompositionoperationAGettinginversefromthearrayStep1:interchangerows1and2Step2:rearrangecolumnssothattheintegers1,2,…,ninthefirstrowoccurinthenaturalorderDefinef0=l.Theinverseoftheidentitypermutationisitself:l-1=l.14GettinginversefromthearrayExample
ConsiderthepermutationinS6givenbyTheninterchangerows1and2,wegetRearrangingcolumnsweget15ExampleConsiderthepermutatPermutationgroupApermutationgroup,isdefinedtobeanon-emptysubsetGofpermutationsinSn,satisfyingthefollowingthreeproperties:(closureundercomposition)ForallpermutationsfandginG,f。gisalsoinG.(identity)TheidentitypermutationlofSnbelongstoG.(closureunderinverses)
ForeachpermutationfinG,theinversef-1isalsoinG.16PermutationgroupApermutationSymmetricgroupThesetSnofallpermutationsofX={1,2,…,n}isapermutationgroup,calledthesemmetricgroupofordern.ThesetG={l}consistingonlyoftheidentitypermutationisapermutationgroup.17SymmetricgroupThesetSnofaCancellationlawEverypermutationgroupsatisfiesthecancellationlawThisisbecausewemayapplyf-1tobothsidesoftheequationand,usingtheassociationlaw.18CancellationlawEverypermutatExamplesletnbeapositiveintegerandletpndenotethepermutationof{1,2,…,n}definedbythuspn(i)=i+1fori=1,2,…,n-1andpn(n)=1.thinkoftheintegersfrom1tonasevenlyspacedaroundacircleoronthecornersofaregularn-gon,asshown,forn=8,inthefigure.19ExamplesletnbeapositiveiIndeedwemayconsiderpnastherotationofthecirclebyanangleof360/ndegree.Thepermutationpn2isthentherotationby2×(360/n)degree,andmoregenerally,foreachnon-nagativeintegerk,pnkistherotationbyk×(360/n)degree.1234567820IndeedwemayconsiderpnastIfrequalskmodn,thenpnr=pnk.Thusthereareonlyndistinctpowersofpn,namely,pn0=l,pn,pn2,…,pnn-1.Alsopn-1=pnn-1,andmoregenerally,
(pnk)-1=pnn-k
fork=0,1,…,n-1.Wethusconcludethat
Cn={pn0=l,pn,pn2,…pnn-1}isapermutationgroup.Itisanexampleofacyclicgroupofordern.21Ifrequalskmodn,thenpnrSymmetryLetQbeageometricalfigure.AsymmetryofQisa(geometric)motionthatbringsthefigureQontoitself.Thegeometricfigureslikeasquare,atetrahedron,andacubearecomposedofcorners(orvertices)andedges,andinthecaseofthree-dimensionalfigure,offaces(orsides).Asaresult,eachsymmetryactsasapermutationonthecorners,ontheedges,andinthecaseofthreedimensionalfigures,onthefaces.22SymmetryLetQbeageometricaSymmetrygroupsWeconcludethatthesymmetriesofQactasapermutationgroupGConitscorners(calledcorner-symmetrygroup),apermutationgroupGEonitsedges(callededge-symmetrygroup),andinthecaseQisthreedimensional,apermutationgroupGFonitsfaces(calledface-symmetrygroup).23SymmetrygroupsWeconcludethaExample
ConsiderthefollowingsquareQwithitscornerslabeled1,2,3,4andedgeslabeleda,b,candd.Thereare8symmetriesofQandtheyareoftwotypes.Therearethe4rotationsaboutthecornerofthesquarethroughtheanglesof0,90,180,and270degrees.1243abcdThese4symmetriesconstitutetheplanersymmetriesofQ,thesymmetrieswherethemotiontakesplaceintheplanecontainingQ.Theplanersymmetriesbythemselvesformagroup.24ExampleConsiderthefollowinTheothersymmetriesarethefourreflectionsaboutthelinesjoiningoppositecornersandthelinesjoiningthemidpointsofoppositesides.Forthesesymmetriesthemotiontakesplaceinspacesinceto“flip”thesquareoneneedstogooutsideoftheplanecontainingit.Therotationsactingonthecornersgivethefourpermutations1243abcd25TheothersymmetriesarethefThereflectionsactingonthecornersgivethefourpermutationsThusthecorner-symmetrygroupofasquareisGC={p40=l,p4,p42,p43,r1,r2,r3,r4}.1243abcd26ThereflectionsactingontheConsidertheedgesofQtobelabeleda,b,canddinthefigure.Theedge-symmetrygroupGEisobtainedfromthecorner-symmetrygroupGCbyreplacing1,witha,2withb,3withcand4withd.Thus,forinstance,doingthisreplacementinr2,wegetandthisisthepermutationoftheedgesthatresultswhenthesquareisreflectedaboutthemidpointsofthelinesbandd.1243abcd27ConsidertheedgesofQtobeDihedralgroupInasimilarwaywecanobtainthesymmetrygroupofaregularn-gonforanyn≥3.Besidesthenrotationspn0=l,pn,pn2,…,pnn-1,wehavenreflectionsr1,r2,…,rn.Ifniseven,thentherearen/2reflectionsaboutoppositecornersandn/2reflectionsaboutthelinesjoiningthemidpointsofoppositesides.Ifnisodd,thenthereflectionsarethenreflectionsaboutthelinesjoiningacornertothesideoppositeit.TheresultinggroupGC={pn0=l,pn,pn2,…,pnn-1,r1,r2,…,rn}of2npermutationsof{1,2,…,n}isaninstanceofadihedralgroupoforder2n.28DihedralgroupInasimilarwayExample
Considertheregularpentagonwithitsverticeslabeled1,2,3,4and5.ItscornersymmetrygroupD5contains5rotations.The5rotationsare1234529ExampleConsidertheregularpLetridenotethereflectionaboutthelinejoiningcorneritothesideoppositeit(i=1,2,3,4,5).Thenwehave1234530LetridenotethereflectionaColoring
SupposewehaveagroupGofpermutationsofasetXwhereX={1,2,…,n}.AcoloringofXisanassignmentofacolortoeachelementofX.LetCbeacollectionofcoloringsofX.31ColoringSupposewehaveagroEquivalentcoloringLetGbeagroupofpermutationsactingonasetX.LetCbeacollectionofcoloringsofXsuchthatforallfinGandallcinC,thecoloringf*cofXisalsoinC.ThusGactsonCinthesensethatittakescoloringsinCtocoloringsinC.Letc1andc2betwocoloringsinC.c1isequivalent(undertheactionofG)toc2providedthereisapermutationfinGsuchthatf*c1=c2.32EquivalentcoloringLetGbeaExample
ConsiderthepreviousexamplewhereGC={p40=l,p4,p42,p43,r1,r2,r3,r4}.Letc={R,B,B,R)b1243abcdp4*c43c12abdl*c=cb1243acdp42*c1243abcdp43*cb1243acdr1*c1243acdr2*c4c312adr3*c4123acdr4*c33ExampleConsiderthepreviousBurnside’stheorem
34Burnside’stheorem34StabilizerLetG(c)={f:finG,f*c=c},thatisG(c)isthesetofallpermutationsthatfixthecoloringc.wecallG(c)thestabilizerofc.E.g.,inthepreviousexample,G(c)={l,r4}isastabilizerofcoloringc={R,B,B,R}.WedenoteC(f)={c:cinC,f*c=c}.35StabilizerLetG(c)={f:finTheorem14.2.1Foreachcoloringc,thestabilizerG(c)ofcisapermutationgroup.Moreover,foranypermutationsfandginG,g*c=f*cifandonlyiff-1。gisinG(c).36Theorem14.2.1ForeachcolorinCorollary14.2.2LetcbeacoloringinC.thenumber
|{f*c:finG}|ofcoloringsthatareequivalenttocequalsthenumber|G|/|G(c)|obtainedbydividingthenumberofpermutationsinGbythenumberofpermutationsinthestabilizerofc.37Corollary14.2.2LetcbeacolBurnside’stheoremLetGbeagroupofpermutationsofXandletCbeasetofcoloringsofXsuchthatf*cisinCforallfinGandallcinG.ThenthenumberN(G,C)ofinequivalentcoloringsinCisgivenbyInwords,thenumberofinequivalentcoloringsinCequalstheaverageofthenumberofcoloringsfixedbythepermutationsinG.38Burnside’stheoremLetGbeagExample1
(countingcircularpermutations).Howmanywaysaretheretoarrangendistinctobjectsinacircle?Hints:theansweristhenumberofwaystocolorthecornersofaregularn-gonQwithndifferentcolorswhichareinequivalentwithrespecttothegroupofrotationsofQ.39Example1(countingcircularpLetCconsistofalln!waystocolorthencornersofQinwhicheachofthencolorsoccursonce.ThenthecyclicgroupCn={pn0=l,pn,pn2,…,pnn-1}actsonC,andthenumberofcircularpermutationsequalsthenumberofinequivalentcoloringsinC.TheidentitypermutationlinCn
fixesalln!coloringsinC.everyotherpermutationinCdoesnotfixanycoloringinCsinceinthecoloringsofCeverycornerhasadifferentcolor.Hence,byBurnside’stheorem,N(Cn,C)=1/n(n!+0+…+0)=(n-1)!.40LetCconsistofalln!waystExample2(countingnecklaces).Howmanywaysaretheretoarrangen≥3differentlycoloredbeadsinanecklace?Hints:itisalmostthesameaspreviousexampleexceptthatnecklacecanbeflippedover.ThegroupGofpermutationsnowhastobetakentobetheentirevertex-symmetrygroupofaregularn-gon.ThusinthiscaseGisthedihedralgroupDnoforder2n.Theonlypermutationthatcanfixacoloringistheidentityanditfixesalln!colorings.Hence,N(Dn,C)=1/2n(n!+0+…+0)=(n-1)!/2.41Example2(countingnecklaces).Example3Howmanyinequivalentwaysaretheretocolorthecornersofaregular5-gonwiththecolorsredandblue?Hints:Thegroupofsymmetriesofaregular5-gonisthedihedralgroupD5={p50=l,p5,p52,p53,p54,r1,r2,r3,r4,r5}(seetheexamplein30).LetCbethesetofall25=32coloringsofthecornersofaregular5-gon.WecomputethenumberofcoloringsleftfixedbyeachpermutationinD5andthenapplyBurnside’stheorem.42Example3HowmanyinequivalentTheidentitylfixesallcolorings.Eachoftheother4rotationsfixesonlytwocolorings,namely,thecoloringinwhichallcornersarered,andthecoloringinwhichallcornersareblue.Thus,|C(p50)|=32and|C(p5i)|=2wherei=1,2,3,4.Nowconsideranyofthereflections,sayr1.Inorderthatacoloringbefixedbyr1,corners2and5musthavethesamecolorandcorners3and4musthavethesamecolor.Hence,thecoloringsfixedbyr1areobtainedbypickingacolorforcorner1(twochoice),pickingacolorfor2and5(twochoice)andpickingacolorforcorners3and4(againtwochoices).Hencethenumberofcoloringsfixedbyr1equals8.Asimilarcalculationholdsforeachreflectionandhence|C(rj)|=8foreachj=1,2,3,4,5.Therefore,thenumberofinequivalentcoloringsisN(D5,C)=1/10(32+2×4+8×5)=8.43TheidentitylfixesallcolorExample4Howmanyinequivalentwaysaretheretocolorthecornersofaregular5-gonwiththecolorsred,blue,andgreen?Hints:refertoexample3.nowthesetCofallcoloringsnumber35=243.Theidentityfixesall243colorings.Everyotherrotationfixesonly3colorings.Eachreflectionfixes3×3×3=27colorings.HenceN(D5,C)=1/10(243+3×4+27×5)=39.44Example4HowmanyinequivalentExercise
Howmanyinequivalentwaysaretheretocolorthecornersofaregular5-gonwithpcolors?Answer:1/10(p5+4×p+5×p3)45ExerciseHowmanyinequivalentExample5LetS={∞{r},∞{b},∞{g},∞{y}}bemultisetoffourdistinctobjectsr,b,g,y,eachwithaninfiniterepetitionnumber.Howmanyn-permutationsofSarethereifwedonotdistinguishbetweenapermutationreadfromlefttorightandthepermutationreadfromrighttoleft?Thusforinstance,r,g,g,g,b,y,yisregardedasequivalenttoy,y,b,g,g,g,r.46Example5LetS={∞{r},∞{b},Solution
Theansweristhenumberofinequivalentwaystocolortheintegersfrom1tonwiththefourcolorsred,blue,greenandyellowundertheactionofthegroupofpermutationsG={l,r},where47SolutionTheansweristhenumNotethatGisagroup.Why?LetCbethesetofall4nwaystocolortheintegersfrom1tonwiththegivenfourcolors.ThenlfixesallcoloringsinC.Thenumberofcoloringsfixedbyrdependsonwhethernisevenorodd.First,supposeniseven.Thenacoloringisfixedbyriff1andnhavethesamecolor,2andn-1havethesamecolor,….,n/2andn/2+1havethesamecolor.Hencerfixes4n/2coloringsinC.Nowsupposethatnisodd.Thenacoloringisfixedbyriff1andnhavethesamecolor,2andn-1havethesamecolor,…,(n-1)/2and(n+3)/2havethesamecolor.
Hencethenumberofcoloringsfixedbyris4(n-1)/2×4=4(n+1)/2.Thus48NotethatGisagroup.Why?LExercise
Ifinsteadoffourcolor,wehavepcolors,whatisthenumberofinequivalentcolorings?Answer:49ExerciseIfinsteadoffourcoPolya’scountingformula50Polya’scountingformula50Factorization
Letbea
permutationoftheset{1,2,3,4,5,6,7,8}.Thenfhasafactorizationasfollows:51FactorizationLetCyclefactorizationLetfbeanypermutationofthesetX.Thenwithrespecttotheoperationofcompositionfhasafactorization
f=[i1i2…ip]。[j1j2..jq]。…。[l1l2…lr]intocycleswhereeachintegerinXoccursinexactlyoneofthecycles.Wecallitcyclefactorizationoff.Thecyclefactorizationoffisuniqueapartfromtheorderinwhichthecyclesappear,andthisorderisarbitrary.EveryelementofXoccursexactlyonceinthecyclefactorization.52CyclefactorizationLetfbeanExample1
DeterminethecyclefactorizationofeachpermutationinthedihedralgroupD4oforder8(thecornersymmetrygroupofasquare).D4Cyclefactorizationp40[1]。[2]。[3]。[4]p41[1234]p42[13]。[24]p43[1432]r1[1]。[24]。[3]r2[13]。[2]。[4]r3[12]。[34]r4[14]。[23]53Example1DeterminethecycleExample2DeterminethecyclefactorizationofeachpermutationinthedihedralgroupD5oforder10(thecorner-symmetrygroupofaregular5-gon).D5Cyclefactorizationp50[1]。[2]。[3]。[4]。[5]P51[12345]p52[13524]p53[14253]p54[15432]r1[1]。[25]。[34]r2[13]。[2]。[45]r3[15]。[3]。[24]r4[12]。[35]。[4]r5[14]。[23]。[5]54Example2DeterminethecyclefExample3LetfbethepermutationofX={1,2,3,4,5,6,7,8,9}.Thecyclefactorizationoffisf=[1473]。[29]。[56]。[8].SupposethatwecolortheelementsofXwiththecolorsred,white,andblue,andletCbethesetofallsuchcolorings.Howmany|C(f)|coloringsinCareleftfixedbyf?Hints:foreachcycle,alltheelementsinthesamecyclewillbecoloredwiththesamecolor.Hence,thetotalcolorings|C(f)|=34=81.55Example3Letfbethepermutat#(f)#(f)isthenumberofcyclesinthecyclefactorizationofapermutationf.E.g.,forf=[1473]。[29]。[56]。[8],#(f)=4.Itisindependentofthesizesofthecycles.56#(f)#(f)isthenumberofcyclTheorem14.3.1LetfbeapermutationofasetX.SupposewehavekcolorsavailablewithwhichtocolortheelementsofX.LetCbethesetofallcoloringsofX.Thenthenumber|C(f)|ofcoloringsofCthatarefixedbyfequalsk#(f).57Theorem14.3.1LetfbeapermuExampleHowmanyinequivalentwaysaretheretocolorthecornersofasquarewiththecolorsred,white,andblue?LetCbethesetofall34=81coloringsofthecornersofasquarewithcolorsred,whiteandblue.Thecorner-symmetrygroupofasquareisthedihedralgroupD4,thecyclefactorizationofwhoseelementswascomputedinExample1.58ExampleHowmanyinequivalentD4Cyclefactorizationp40[1]。[2]。[3]。[4]p41[1234]p42[13]。[24]p43[1432]r1[1]。[24]。[3]r2[13]。[2]。[4]r3[12]。[34]r4[14]。[23]#(f)|C(f)|434=81131=3232=9131=3333=27333=27232=9232=9Hence,theanswerisN(D4,C)=(81+3+9+3+27+27+9+9)/8=2159D4Cyclefactorizationp40[1]。[2TypeofapermutationLetfbeapermutationofXwhereXhasnelements.Supposethatthecyclefactorizationoffhase11-cycles,e22-cycles,…andenn-cycles.Then1e1+2e2+…+nen=n.wecallthen-tuple(e1,e2,…,en)thetypeofthepermutationfandwritetype(f)=(e1,e2,…,en).#(f)=(e1+e2+…+en)Differentpermutationmayhasthesametype.Why?60TypeofapermutationLetfbeMonomialofapermutationWeintroducenindeterminatesz1,z2,…,znwherezkistocorrespondtoak-cycle(k=1,2,…,n).Toeachpermutationfwithtype(f)=(e1,e2,…,en)weassociatethemonomialoff,mon(f)=z1e1z2e2…znen.61MonomialofapermutationWeinGeneratingfunctionLetGbeagroupofpermutationsofX.ThegeneratingfunctionforthepermutationsinGaccordingtotypeis
Ifwecombineterms,thecoefficientofz1e1z2e2…znenequalsthenumberofpermutationsinGoftype(e1,e2,…,en).62GeneratingfunctionLetGbeaCycleindexThecycleindexofGisthegeneratingfunctiondividedbythenumber|G|ofpermutationsinG.Thatis63CycleindexThecycleindexofExample
DeterminethecycleindexofthedihedralgroupD4.PD4(z1,z2,z3,z4)=(z14+2z4+3z22+2z12z2)/8D4Cyclefactorizationp40[1]。[2]。[3]。[4]p41[1234]p42[13]。[24]p43[1432]r1[1]。[24]。[3]r2[13]。[2]。[4]r3[12]。[34]r4[14]。[23]typemonomial(4,0,0,0)z14(0,0,0,1)z4(0,2,0,0)z22(0,0,0,1)z4(2,1,0,0)z12z2(2,1,0,0)z12z2(0,2,0,0)z22(0,2,0,0)z2264ExampleDeterminethecycleinExerciseDeterminethecycleindexofthedihedralgroupD5.AnswerPD5(z1,z2,z3,z4,z5)=(z15+4z5+5z1z22)/10.65ExerciseDeterminethecycleiTheorem14.3.2LetXbeasetofnelementsandsupposewehaveasetofkcolorsavailablewithwhichtocolortheelementsofX.LetCbethesetofallkncoloringsofX.LetGbeagroupofpermutationsofX.Thenthenumberofinequivalentcoloringsisthenumber|N(G,C)|=PG(k,k,…,k)obtainedbysubstitutingzi=k,(i=1,2,…,n)inthecycleindexofG.66Theorem14.3.2LetXbeasetoExample
Wearegivenasetofkcolors.Whatisthenumberofinequivalentwaystocolorthecornersofasquare?ThecycleindexofthedihedralgroupD4hasalreadybeendeterminedtobePD4(z1,z2,z3,z4)=(z14+2z4+3z22+2z12z2)/8.HencetheanswerisPD4(k,k,k,k)=(k4+2k+3k2+2k3)/8.Ifk=6,thenthenumberofinequivalentcoloringsis
PD4(6,6,6,6)=(64+2×6+3×62+2×63)/8=231.67ExampleWearegivenasetofExampleHowmanyinequivalentcoloringsarethereofthecornersofaregular5-goninwhichthreecornersarecoloredredandtwoarecoloredblue?Hints:(a)|C|=10;(b)Forthecyclefactorizationofeachpermutation,computerthenumberoffixedcolorings;(c)ApplyBurnsidetheorem.68ExampleHowmanyinequivalentTheorem14.3.3LetXbethesetofelementsandletGbeagroupofpermutationsofX.Let{u1,u2,…,uk}beasetofkcolorsandletCbeanysetofcoloringsofXwiththepropertythatGactsasapermutationgrouponC.ThenthegeneratingfunctionforthenumberofinequivalentcoloringsofCaccordingtothenumberofcolorsofeachkindistheexpressionPG(u1+…+uk,u12+…+uk2,….,u1n+…+ukn).69Theorem14.3.3LetXbethesetTheorem14.3.3(cont’d)PG(u1+…+uk,u12+…+uk2,….,u1n+…+ukn)isobtainedfromthecycleindexPG(z1,z2,…zn)bymakingthesubstitutionszj=u1j+…ukj(j=1,2,…,n).Thecoefficientofu1p1u2p1…ukpkequalsthenumberofinequivalentcoloringsinCwithp1elementsofXcoloredu1,p2elementscoloredu2,…,pkelementscoloreduk.70Theorem14.3.3(cont’d)PG(u1+…Example1Determinethegeneratingfunctionforinequivalentcoloringsofthecornersofasquarewith2colorsandalsothosewith3colors.PD4(z1,z2,z3,z4)=(z14+2z4+3z22+2z12z2)/8.Letthetwocolorsberandb.ThenthegeneratingfunctionisPD4(r+b,r2+b2,r3+b3,r4+b4)=1/8[(r+b)4+2(r4+b4)+3(r2+b2)2+2(r+b)2(r2+b2)]=r4+r3b+2r2b2+rb3+b4.(howtocolor?)Continuethecasefor3colorsbyyourself!!!!!71Example1DeterminethegeneratExample2Determinethegeneratingfunctionforinequivalentcoloringsofthecornersofaregular5-gonwith2colorsandalsothosewith3colors.ThecycleindexofD5isPD5(z1,z2,z3,z4,z5)=(z15+4z5+5z1z22)/10.ThenthegeneratingfunctionforinequivalentcoloringsisPD5(r+b,r2+b2,…,r5+b5)=r5+r4b+2r3b2+2rrb3+rb4+b5.thetotalnumberofinequivalentcoloringsequals1+1+2+2+1+1=8.Continueforthecasewith3colorsbyyourself.72Example2DeterminethegeneratExample3Determinethesymmetrygroupofacubeandthenumberofinequivalentwaystocolorthecornersandfacesofacubewithaspecifiednumberofcolors.12345678Thereare24symmetriesofacube,andtheyarerotationsoffourtypesdifferentkinds.73Example3DeterminethesymmetrStep1determinethesymmetries(1)theidentityrotationl(numberis1)(2)therotationsaboutthecentersofthethreepairsofoppositefacesby(a)90degrees(numberis3)(b)180degree(numberis3)(c)270degree(numberis3)(3)therotationsby180degreeaboutmidpointsofoppositeedges(numberis6)(4)therotationsaboutoppositecornersby(a)120degrees(numberis4)240degree(numberis4).74Step1determinethesymmetrieStep2computethetype123456781234567812345678(a)(0,0,0,2,0,0,0,0)(b)(0,4,0,0,0,0,0,0)(c)(0,0,0,2,0,0,0,0)(0,4,0,0,0,0,0,0)(2,0,2,0,0,0,0,0)(2,0,2,0,0,0,0,0)Computethefacetypebyyourself!!!!75Step2computethetype1234567Step3cycleindex
PGC(z1,z2,…z8)=1/24(z18+6z42+9z24+8z12z32).symmetrynumberCornertypeFacetype(1)1(8,0,0,0,0,0,0,0)(6,0,0,0,0,0)2(a)3(0,0,0,2,0,0,0,0)(2,0,0,1,0,0)2(b)3(0,4,0,0,0,0,0,0)(2,2,0,0,0,0)2(c)3(0,0,0,2,0,0,0,0)(2,0,0,1,0,036(0,4,0,0,0,0,0,0)(0,3,0,0,0,04(a)4(2,0,2,0,0,0,0,0)(0,0,2,0,0,04(b)4(2,0,2,0,0,0,0,0)(0,0,2,0,0,076Step3cycleindexPGC(z1,z2,Step4generatingfunctionSupposeweapplytwocolorsrandb.ThegeneratingfunctionforinequivalentcoloringsofthecornersofacubeisPGC(r+b,r2+b2,…,r8+b8)=r8+r7b
+
3r6b2+3r5b3+7r4b4+3r3b5+3r2b6+rb7+b8.Hencethetotalnumberofinequivalentcoloringsforthecornersis23.Computerthetotalnumberofinequivalentcoloringsforthefacesbyyourself!!!!77Step4generatingfunctionSuppAssignments1,6,8,11,18,23,26,29,35,37,38.78Assignments1,6,8,11,18,23Chapter14
Polyacounting
79Chapter14
Polyacounting1SummaryPermutationandsymmetrygroupsBurnsidetheoremPolyacountingformulaAssignments80SummaryPermutationandsymmetrColoringaregulartetrahedronSupposetocolorthefourcornersofar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度食品出口销售合同标准范本3篇
- 二零二五年节能照明设备销售合作协议3篇
- 二零二五版建筑废弃物资源化利用与处理合同3篇
- 二零二五年度汽车买卖及售后服务合同范本3篇
- 二零二五版新型采购监控设备采购与维护服务协议3篇
- 2025年国有企业厂长任期目标责任书及薪酬激励机制合同3篇
- 二零二五年度高空桥梁检修作业安全协议书2篇
- 二零二五版技术专利权转让与产业链协同创新与市场拓展服务协议3篇
- 2025年度餐厅装修设计与施工合同2篇
- 2瓷砖销售合同2024年版
- 八年级散文阅读专题训练-八年级语文上册知识梳理与能力训练
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- 《环境感知技术》2024年课程标准(含课程思政设计)
- GB/T 45079-2024人工智能深度学习框架多硬件平台适配技术规范
- 2024年安徽省铜陵市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 国家安全教育高教-第六章坚持以经济安全为基础
- 水处理药剂采购项目技术方案(技术方案)
- 2024年城市环卫一体化服务合同
- 工地春节安全培训
- 2024年代持房屋合作协议书模板
评论
0/150
提交评论