版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工程热力学工程热力学工程热力学基础要求:热力系统、工质、功、热量、内能和熵等概念,理想气体和卡诺循环等。热力学第一和第二定律,P-V图和P-S图,理想气体的热力过程和发动机的理想循环。传热学:热量传递方式、物质的导热特性工程热力学基础要求:第一节气体的状态及状态方程一、热力系统1、在热力学中,从若干个物体中规划出所要研究的对象,称为热力系统;热力系外界界面2、工质:在热力设备中用来实现热能与其它形式的能量交换的物质。※热力设备通过工质状态的变化实现与外界的能量交换。第一节气体的状态及状态方程一、热力系统热力系外界界面2、工二、热力状态与状态参数1、热力状态:热力系统在某一瞬间所呈现的宏观物理状况。热力平衡状态:当外界条件不变系统内状态长时间不变,即具有均匀一致的P、V、T。2、状态参数:用来描述气体热力状态的物理量基本状态参数:可直接测量的状态参数,包括:压力(P)、比容(ν)、温度(T)。主要状态参数:压力P、比容ν、温度T、内能U、熵S、焓H。二、热力状态与状态参数1、热力状态:热力系统在某一瞬间所呈现基本状态参数:1、比容ν
:m3/kg
。定义:单位质量的物质所占的容积:
ν=V/M
V--物质的容积,[m3];M--物质的质量,[kg]。比容的倒数是?2、压力P
:Pa,Mpa、kPa。定义:系统单位面积上受到的垂直作用力。即:P=F/A压力的测量3、温度T
:K。定义:表征物体的冷热程度(T↑气体分子的平均动能越大)基本状态参数:1、比容ν:m3/kg。压力的测量3、温度三、理想气体的状态方程
1、理想气体:气体分子本身不占有体积,分子之间无相互作用力的气体。
2、理想气体的状态方程:
Pν=RTPV=mRT或PV=nRT
对空气,R=0.287kJ/kg·K1摩尔理想气体在零摄氏度和1标准大气压下的体积,等于22.4138×10-3米3/摩尔。普适气体常数R=8.31441焦耳/摩尔·开
3、压容图
气体的状态也可用P-V图上的一个点表示,比较直观。三、理想气体的状态方程气体的状态也可用P-V图上的一个【摩尔质量】常称为克分子量。一定质量的某种物质,如果用克作质量的单位,其数值恰好等于该物质的分子量的大小时,那么,这一定数值的质量就叫做1“摩尔质量”。例如,碳是单原子分子,因此12克的碳就称为1摩尔质量的碳;氧是双原子分子,即由两个氧原子组成一个氧分子,因此,32克的氧就称为1摩尔质量的氧;氢也是双原子分子,因此2克的氢也称为1摩尔质量的氢。
【摩尔质量】常称为克分子量。一定质量的某种物质,如果用克作质在相同的温度和压力下,湿空气比干空气的密度大?大气压(湿空气压力)=干空气分压+水蒸气分压在热力学中,常温常压下的干空气可认为是理想气体。而湿空气中的水蒸气由于处于过热状态,而且数量很少,分压力很低,比容较大,可近似地当作理想气体。在相同的温度和压力下,湿空气比干空气的密度大?第二节热力过程及过程量
一、热力过程
热力系统从一个平衡状态到另一个平衡状态的变化历程。
P-V图上,一个点表示气体的一个热力状态;一条曲线表示一个热力过程。二、膨胀功W(J)气体在热力过程中由于体积发生变化所做的功(又称为容积功)第二节热力过程及过程量一、热力过程规定:热力系统对外界做功为正,外界对热力系统做功为负。由δW=PdV得:
dV>0,膨胀,δW>0,系统对外界做功;
dV<0,压缩,δW<0,外界对系统做功;
dV=0,δW=0,系统与外界之间无功量传递。膨胀,W>0压缩,W<0规定:热力系统对外界做功为正,外界对热力系统做功为负。膨胀,三、热量是系统与外界之间依靠温差来传递的能量形式,用Q表示
q=Q/mJ/kg规定:传入热力系统的热量为正值,即吸热为正;传出热力系统的热量为负值,即放热为负。※热量与功一样,是系统在热力过程中与外界传递的能量形式,因此是过程量,不是状态参数。三、热量四.熵和温熵图熵S的增量等于系统在过程中交换热量除以传热时绝对温度所得的商ds=δq/T1Kg工质的熵的单位J/kgKmKg工质熵的单位J/K※比容ν的变化量标志着有无做功,熵s的变化量标志着有无传热。熵s是一个状态参数ds>0,Q>0,吸热;ds<0,Q<0,放热;ds=0,无热量交换.吸热,Q>0放热Q<0四.熵和温熵图※比容ν的变化量标志着有无做功,熵s的变化量标【热力学第零定律】若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。热平衡系统的状态函数被定义为温度。温度相等是热平衡之必要的条件。
【热力学第零定律】若两个热力学系统中的任何一个系统都和第三个一、热力学第一定律表述为:当热能与其它形式的能量相互转换时,能的总量保持不变。对于一个热力系统:
进入系统的能量-离开系统的能量
=系统内部储存能量的变化量※热力学第一定律是能量转换与守恒定律在热力学上的具体应用,它阐明了热能和其它形式的能量在转换过程中的守恒关系。它表达工质在受热作功过程中,热量、作功和内能三者之间的平衡关系。第三节热力学第一定律一、热力学第一定律第三节热力学第一定律二、内能-工质内部所具有的各种能量总称宏观能量包括:微观能量即系统的内能,包括:宏观能量微观能量内动能内位能内位能与分子间的距离、吸引力有关,是比容的函数;内动能包括移动动能、转动动能和振动动能,是温度的单值函数。★对于理想气体,不考虑分子间的位能,故内能只是分子的内动能,仅与温度有关,是温度的单值函数,用符号u表示,单位J。系统本身所具有的能量包括:动能位能机械能二、内能-工质内部所具有的各种能量总称宏观能量包括:微观能量三、闭口系统的能量方程1、定义:
与外界没有质量交换的系统。
2、能量方程式
Q-W=ΔU故Q=ΔU+W对于微元过程:δQ=dU+δW对于1kg工质:q=Δu+w
(J/Kg)—闭口系统能量方程★以上各项均为代数值,可正可负或零,且不受过程的性质和工质性质的限制。三、闭口系统的能量方程故Q=ΔU+W对于微元过程:δQ=dU焓⑴H=U+pV
焓=流动内能+推动功
⑵焓H没有明确的物理意义:表示流动工质所具有的能量中,取决于热力状态的那部分能量
在大气内进行的化学反应,压强一般保持常值,则有
ΔH=ΔU+pΔV
规定放热反应的焓取负值。熵S为系统的混乱度
dH=dH=TdS+Vdp焓⑴H=U+pV
焓=流动内能+推动功
⑵焓H没有明确的
四、理想气体的比热1、比热的定义和单位热容量:向热力系统加热(或取热)使之温度升高(或降低)1K所需的热量,用C表示。比热:单位质量工质的热容量,用c表示。即c=C/m单位J/(kgK)或c=dq/dT(单位质量的物质作单位温度变化时吸放的热量)
2、比热与过程的关系功量和热量都是过程量,故比热与过程有关。热力过程中最常见的加热过程是保持压力不变和容积不变,因此比热也相应的分为定压质量比热和定容质量比热,分别以符号cP
和cν
表示。绝热指数:K=cP/cν四、理想气体的比热
3、比热与气体性质、温度的关系
实验证明,多数气体的比热随温度的升高而增大,但为使计算简便,不考虑比热随温度的变化,即采用定值比热(或定比热)。
五、理想气体内能的计算
在保持系统容积不变的加热过程中,加热量为:
qν=cν(T2-T1)
由热力学第一定律
q=w+Δu推出:Δu=cv(T2-T1)★内能是一状态量,与热力过程无关,且理想气体的内能只是温度的函数,故上述公式适用于任何热力过程。且w=0,3、比热与气体性质、温度的关系推出:Δu=cv(T2-T第四节理想气体的热力过程工程热力学把热机循环概括为工质的热力循环,热力循环分成几个典型的热力过程—定容、定压、定温和绝热—称为基本热力过程。第四节理想气体的热力过程工程热力学把热机循环概括为工质的热一、定容过程1、定义:过程进行中系统的容积(比容)保持不变的过程。2、过程方程式:ν=常数3、参数间的关系:P1/P2=T1/T2,
P1/T1=P2/T2即:加入工质的热量全部转变为工质的内能。由PV=RT
知,P/T=常数,所以:P1/P2=T1/T2,P1/T1=P2/T2即:加入工质5、过程曲线等容加热温度升高等容放热温度降低2’25、过程曲线等容加热等容放热2’2二、定压过程
1、定义:过程进行中系统的压力保持不变。
2、过程方程式:P=常数3、参数间的关系:由ν/T=常数
ν1/T1=ν2/T2ν1/ν2=T1/T2由热力学第一定律:cp=cν+R
—迈耶公式cp/cν=k—绝热指数二、定压过程P=常数3、参数间的关系:由ν/T=常数ν1/5、过程曲线等压加热对外做功温度升高21等压放热对内做功温度降低2’★T-s图上,等压曲线要比等容曲线平坦(说明在达到相同气体温度下,定压过程要比定容过程吸收更多的热量)。5、过程曲线等压加热21等压放热2’★T-s图上,等压曲线要三、定温过程1、定义:过程进行中系统的温度保持不变的过程。2、过程方程式:T=常数3、参数间的关系:
Pν=RT=常数P1ν1=P2ν2
4、过程量的计算:T=常数
所以
u=0由
q=w+u可得:q=w※加入系统的热量全部转换为系统对外界做的功。三、定温过程P1ν1=P2ν24、过程量的计算:T=5、过程曲线等温压缩对外放热等温膨胀吸热22’5、过程曲线等温压缩等温膨胀22’四、绝热过程
1、定义:过程进行中系统与外界没有热量的传递(q=0→
s=q/T=0,故也称定熵过程)。
2、过程方程式:Pvk=常数(推导略)
K=cp/cν:绝热指数即:外界对系统所做的功全部用来增加系统的内能。四、绝热过程K=cp/cν:绝热指数即:外界对系统所做的功5、过程曲线绝热压缩温度升高绝热膨胀温度降低5、过程曲线绝热压缩绝热膨胀
五、多变过程
在实际的热力过程中,P、ν、T的变化和热量的交换都存在,不能用上述某一特殊的热力过程来分析,需用一普遍的、更一般的过程即多变过程来描述。
1、过程方程式:Pvn=常数n:多变指数。
等压过程;n=1,Pv=常数等温过程;n=k,Pvk=常数绝热过程;n=∞,v=常数等容过程。n=0,P=常数五、多变过程n:多变指数。等压过程;n=1,Pv=常数2、各过程在P-v图上的比较等压线:压力升高部分压力降低部分等容线:膨胀部分压缩部分等温线:温度升高部分温度降低部分绝热线:吸热部分放热部分n=1n=kn=nW<0W>0n从到0,放热→0→吸热;等温线右内能增加,左内能减少。例如压缩机压缩过程:K>n>12、各过程在P-v等压线:压力升高部分等容线:膨胀部分等温线第五节热力学第二定律
重点掌握:
1、热力学第二定律的表述;
2、热力循环的热效率;
3、卡诺循环的热效率。第五节热力学第二定律重点掌握:一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物体传至高温物体。—热量不可能自发地从冷物体转移到热物体。
2、不可能制成一种循环工作的热机,仅从单一的高温热源取热,使之完全转变为有用功,而不向低温热源(冷源)放热。—单热源热机是不存在的。能量传递(热功转换)过程的方向、条件和限度问题,要由热力学第二定律来回答。热力学第二定律的实质是一切自发的过程都是不可逆的。一、热力学第二定律的表述二、热力循环系统从某一状态(初始状态)出发,经历一系列的中间状态,又回到初始状态,这样一个封闭的热力过程称为一个热力循环。(在P-V图上,热力循环是一封闭的曲线。)正向循环—把热能转变为机械功的循环。逆向循环—靠消耗机械功将热量从低温热源传向高温热源的循环。(或称热泵循环)二、热力循环1、循环净功量1-2-3-4-1:顺时针进行的热力过程,过程曲线所围成的面积为正,称为正循环。w
1-4-3-2-1:逆时针进行的热力过程,过程曲线所围成的面积为负,称为负循环。循环净功W=Q1-Q2Q1为1-2-3,工质从高温热源吸热Q2为3-4-1,工质从向低温热源放热1、循环净功量1-2-3-4-1:顺时针进行的热力过程,过程定义:循环净功与从高温热源吸收热量的比值ηT=W/Q1=(Q1-Q2)/Q1=1-Q2/Q1
W:对外作出的循环净功;Q1:循环中吸收的总热量;Q2:循环中放出的总热量。
作用:评价循环的经济性。三、热机循环的热效率定义:循环净功与从高温热源吸收热量的比值三、热机循环的热效率三、卡诺循环(最理想的热机循环)由两个定温过程和两个绝热过程组成的可逆循环。卡诺循环的热效率:1、卡诺循环的热效率取决于高温热源和低温热源的温度,高温热源的温度上升,低温热源的温度下降,则卡诺循环的热效率提高。三、卡诺循环(最理想的热机循环)卡诺循环的热效率:1、卡诺循题:内燃机混合气燃烧温度为2200K,排气最高温度1100K(环境温度300K)计算其卡诺循环最高理论热效率,并指出提高的方法。题:内燃机混合气燃烧温度为2200K,排气最高温度1100K2、卡诺循环的热效率永远小于1。即在循环工作的发动机中,不可能将吸收的热量全部转化为功,必定有部分热量传递给低温热源。3、当T1=T2时,卡诺循环的热效率为0。即在温度平衡的系统中,不可能将热量转化为功(不可能由单一热源循环作功)。
4、当无论什么工质和循环,在一定温度范围T1到T2时之间,不可能制造出热效率超过1-T2/T1的热机。即最高热效率只能接近1-T2/T1。※
这几条结论具有普遍性,适用于一切热机。2、卡诺循环的热效率永远小于1。四、卡诺定理
在两个不同定温热源间工作的任何热机的热效率,不可能大于在同样两个热源间工作的可逆热机的热效率。
推论:
1、一切可逆热机的热效率彼此相等且等于卡诺热机的热效率,不可逆热机的热效率小于可逆热机的热效率。
2、在内燃机上,如果排气温度过高,则内燃机的热效率下降;提高压缩比,使T1升高,则内燃机的热效率升高。四、卡诺定理动力循环往复活塞式燃气轮机增压发动机特点:工质在高温热源吸热;在低温热源放热;对外输出功。动力循环往复活塞式第六节活塞式内燃机的理想循环
为便于分析内燃机的实际工作过程,将内燃机的某个循环的各个实际过程全部抽象的概括为若干个可逆过程,这样得到的一个闭合循环,称为理想循环。
理想化的原则及方法:
1、工质所经历的状态变化为一闭合循环;
2、循环中工质的数量和化学成分始终不变;
3、组成各循环的过程都是可逆的;
4、工质的比热为定值。第六节活塞式内燃机的理想循环为便于分析内燃机的实要求掌握:
1、车用发动机的理想循环各是什么;
2、理想循环各由哪些过程组成;
3、影响理想循环热效率的因素;
4、车用发动机理想循环的比较。要求掌握:一、内燃机的理想循环1、实际循环及理想化实际工作过程:进气、压缩、燃烧、膨胀、排气汽油机的理想循环:
等容加热循环低速柴油机的理想循环:
等压加热循环高速柴油机的理想循环:
混合加热循环一、内燃机的理想循环实际工作过程:进气、压缩、燃烧、膨胀、排2、汽油机的理想循环1-2的压缩过程绝热压缩;2-3的燃烧过程等容加热;3-4的膨胀过程绝热膨胀;4-1的排气过程等容放热。等容加热循环的热效率:
ηT=1-1/εk-1ε--压缩比;k--绝热指数。--等容加热循环Q2Q12、汽油机的理想循环1-2的压缩过程绝热压缩;等容加热循环3、车用柴油机的理想循环
--混合加热循环混合加热循环的热效率:1-2的压缩过程绝热压缩;2-3的燃烧过程等容加热;3-4的燃烧过程等压加热;4-5的膨胀过程绝热膨胀;5-1的排气过程等容放热。ε=V1/V2--压缩比,λ=P3/P2-压力升高比,ρ=V4/V3-预胀比,k--绝热指数.Q1’Q1’’3、车用柴油机的理想循环--混合加热循环混合加热循环的热效4、低速柴油机的理想循环--等压加热循环1-2的压缩过程
绝热压缩;2-3的燃烧过程
等压加热;3-4的膨胀过程
绝热膨胀;4-1的排气过程
等容放热。等容加热循环的热效率:ηT=1-1/εk-1×(ρK-1)/K(ρ-1)4、低速柴油机的理想循环--等压加热循环1-2的压缩过程等容二、影响内燃机理想循环的主要因素
分析循环的主要目的是找出影响循环热效率的因素,找到提高热效率的途径。常用的方法有:
1、解析法:从循环热效率的公式出发进行分析。2、图示法:由P—V图、T—S图入手分析。二、影响内燃机理想循环的主要因素1、压缩比的影响
压缩比对上述三种理想循环的影响是相同的。由热效率的公式:ε,提高循环平均吸热温度,降低循环平均放热温度扩大了循环温差和膨胀比,ηT。当压缩比较小时,热效率随压缩比的增加显著增大;当压缩比较大时,热效率随压缩比的增加增大较少。由试验曲线看出:1、压缩比的影响压缩比对上述三种理想循环的影响是相同的。2、K的影响
由公式看出,K↑ηT↑(混合气较稀,K较大)K取决于工质的性质,双原子气体为1.4;多原子为1.33.3、λ的影响
(1)对定容加热循环,λ↑ηT不变因为λ↑则Q1↑和W↑→Q2/Q1不变。
(2)对混合加热循环,λ↑ηT↑Q1不变,λ↑值增大(Q1v↑)则相对的减少了Q1p所占的比例,而Q2减少,使整个循环的热效率会增大。4、ρ的影响
(1)对等压加热循环,ρ↑ηT↓。(ρ↑→
Q2↑)
(2)对混合加热循环,ρ↑ηT↓2、K的影响比较图中各循环加热过程所对应的面积,得出:
Q2p>Q2m>Q2v所以:
ηtv>ηtm>ηtp三、活塞式内燃机理想循环的比较1、在等压缩比ε
、等加热量Q1条件下比较图中各循环加热过程所对应的面积,三、活塞式内燃机理想循环2、在循环的最高温度、最高压力相同的条件下在T-S图上比较三种循环的加热量和放热量,可以看出:放热量q2都相同,而加热量为:
Q1p>Q1m>Q1v所以:ηtp>ηtm>ηtv
实际内燃机中,由于压缩比选取的不同,有:ηtm
>ηtp>ηtv2、在循环的最高温度、最高压力相同的条件下在T-S图上比较三热力系统的分类
(据界面上物质和能力交换的情况分)
闭口系统:与外界无质量交换的系统;开口系统:与外界有质量交换的系统;绝热系统:与外界无热量交换的系统;孤立系统:与外界即无质量交换,又无热量交换的系统。热力系统的分类
(据界面上物质和能力交换的情况分)闭口系压力的测量
当系统的压力高于大气压力时,用压力表测量。P=Pb+PgP:系统压力(绝对压力);Pb:大气压力;Pg:表压力(压力表读数)。压力的测量当系统的压力高于大气压力时,P=Pb+Pg压力的测量当系统的压力低于大气压力时,用真空表测量。P=Pb-Pv
Pv:真空表读数。※由于表压力和真空度随大气压力的变化而变化,所以只有绝对压力才能作为系统的状态参数。压力的测量当系统的压力低于P=Pb-Pv※由于表压力和真空度湿度绝对湿度:一定体积的空气中含有的水蒸气的质量,克/立方米。相对湿度:水蒸气的饱和度有多高。相对湿度为100%的空气是饱和的空气。在一定温度和压力下,绝对湿度和饱和绝对湿度之比称为该温度下的相对湿度。在同样多的水蒸气的情况下温度升高相对湿度就会降低。因此在提供相对湿度的同时也必须提供温度的数据。通过相对湿度和温度也可以计算出露点。
湿度绝对湿度:一定体积的空气中含有的水蒸气的质量,克/立方米含湿量d—单位质量干空气的湿空气所含有的水蒸气的质量。单位g/kg(干空气)。含湿量d—单位质量干空气的湿空气所含有的水蒸气的质量。单位g【露点】空气中的水蒸气由于冷却而达到饱和时的温度。当气温与露点的差值越小,表示空气越接近饱和,空气的相对湿度则越高。例如,在某一气压下,测得空气的温度是20℃,露点是12℃,从表中查到20℃时的饱和蒸汽压为2328Pa(17.54毫米汞柱),12℃时的饱和蒸汽压为1402.3Pa(10.52毫米汞柱)空气的相对湿度60%当大气的相对湿度大时露点高,相对湿度小则露点低。【露点】空气中的水蒸气由于冷却而达到饱和时的温度。传热传热的基本方式:热传导、热对流和热辐射热传导:不涉及物质转移,热量从高温传递给相接触的低温,简称导热。热对流:不同温度的流体各部分由相对运动引起的热量交换。流体与其接触的固体壁面之间的换热过程,是热传导和热对流综合作用的结果。热辐射:物体因自身具有温度而辐射出能量的现象。热量可以在真空中直接传递。每一物体都具有与其绝对温度的四次方成比例的热辐射能力,也能吸收周围环境对它的辐射热。辐射和吸收所综合导致的热量转移称为辐射换热。传热传热的基本方式:热传导、热对流和热辐射导热系数1m厚的材料,两侧表面的温差为1度(K,°C),在1小时内,通过1平方米面积传递的热量,单位为瓦/米•度(W/m•K,此处为K可用℃代替)。导热系数较低的材料称为保温材料,而把导热系数在0.05瓦/米•度以下的材料称为高效保温材料。
导热系数1m厚的材料,两侧表面的温差为1度(K,°C),在1传热系数K以往称总传热系数。稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米·度(W/㎡·K,此处K可用℃代替)。传热系数K以往称总传热系数。热力学例题热量从一个物体传递到另一个物体是靠物质载体,而不是靠电磁波?理想气体是想象中的一类气体,分子本身不具有体积,分子之间也没有作用力。热力学例题热量从一个物体传递到另一个物体是靠物质载体,而不是热力学例题热量从一个物体传递到另一个物体是靠物质载体,而不是靠电磁波?理想气体是想象中的一类气体,分子本身不具有体积,分子之间也没有作用力。(单选)下列说法正确的是:1)循环输出净功愈大,则热效率愈高2)可逆循环的热效率都相等3)不可逆循环的热效率一定小于可逆循环的热效率4)“机械能可以全部变为热能,而热能不可能全部变成机械能”这个说法是错误的热力学例题热量从一个物体传递到另一个物体是靠物质载体,而不是例题在热力学中可逆绝热过程也称为定熵过程?相同体积的氢气和氧气,前者的摩尔数较大?夏季和冬季虽然温度不同,但相同的相对湿度条件下空气所含水的质量相同?例题在热力学中可逆绝热过程也称为定熵过程?热力学例题热量从一个物体传递到另一个物体是靠物质载体,而不是靠电磁波?理想气体是想象中的一类气体,分子本身不具有体积,分子之间也没有作用力。(单选)下列说法正确的是:1)循环输出净功愈大,则热效率愈高2)可逆循环的热效率都相等3)不可逆循环的热效率一定小于可逆循环的热效率4)“机械能可以全部变为热能,而热能不可能全部变成机械能”这个说法是错误的热力学例题热量从一个物体传递到另一个物体是靠物质载体,而不是例题(多选)动力循环的共同特点有:动1)工质在高温热源吸热2)工质在低温热源放热3)对外输出功4)有往复运动机构力循环例题(多选)动力循环的共同特点有:演讲完毕,谢谢观看!演讲完毕,谢谢观看!工程热力学工程热力学工程热力学基础要求:热力系统、工质、功、热量、内能和熵等概念,理想气体和卡诺循环等。热力学第一和第二定律,P-V图和P-S图,理想气体的热力过程和发动机的理想循环。传热学:热量传递方式、物质的导热特性工程热力学基础要求:第一节气体的状态及状态方程一、热力系统1、在热力学中,从若干个物体中规划出所要研究的对象,称为热力系统;热力系外界界面2、工质:在热力设备中用来实现热能与其它形式的能量交换的物质。※热力设备通过工质状态的变化实现与外界的能量交换。第一节气体的状态及状态方程一、热力系统热力系外界界面2、工二、热力状态与状态参数1、热力状态:热力系统在某一瞬间所呈现的宏观物理状况。热力平衡状态:当外界条件不变系统内状态长时间不变,即具有均匀一致的P、V、T。2、状态参数:用来描述气体热力状态的物理量基本状态参数:可直接测量的状态参数,包括:压力(P)、比容(ν)、温度(T)。主要状态参数:压力P、比容ν、温度T、内能U、熵S、焓H。二、热力状态与状态参数1、热力状态:热力系统在某一瞬间所呈现基本状态参数:1、比容ν
:m3/kg
。定义:单位质量的物质所占的容积:
ν=V/M
V--物质的容积,[m3];M--物质的质量,[kg]。比容的倒数是?2、压力P
:Pa,Mpa、kPa。定义:系统单位面积上受到的垂直作用力。即:P=F/A压力的测量3、温度T
:K。定义:表征物体的冷热程度(T↑气体分子的平均动能越大)基本状态参数:1、比容ν:m3/kg。压力的测量3、温度三、理想气体的状态方程
1、理想气体:气体分子本身不占有体积,分子之间无相互作用力的气体。
2、理想气体的状态方程:
Pν=RTPV=mRT或PV=nRT
对空气,R=0.287kJ/kg·K1摩尔理想气体在零摄氏度和1标准大气压下的体积,等于22.4138×10-3米3/摩尔。普适气体常数R=8.31441焦耳/摩尔·开
3、压容图
气体的状态也可用P-V图上的一个点表示,比较直观。三、理想气体的状态方程气体的状态也可用P-V图上的一个【摩尔质量】常称为克分子量。一定质量的某种物质,如果用克作质量的单位,其数值恰好等于该物质的分子量的大小时,那么,这一定数值的质量就叫做1“摩尔质量”。例如,碳是单原子分子,因此12克的碳就称为1摩尔质量的碳;氧是双原子分子,即由两个氧原子组成一个氧分子,因此,32克的氧就称为1摩尔质量的氧;氢也是双原子分子,因此2克的氢也称为1摩尔质量的氢。
【摩尔质量】常称为克分子量。一定质量的某种物质,如果用克作质在相同的温度和压力下,湿空气比干空气的密度大?大气压(湿空气压力)=干空气分压+水蒸气分压在热力学中,常温常压下的干空气可认为是理想气体。而湿空气中的水蒸气由于处于过热状态,而且数量很少,分压力很低,比容较大,可近似地当作理想气体。在相同的温度和压力下,湿空气比干空气的密度大?第二节热力过程及过程量
一、热力过程
热力系统从一个平衡状态到另一个平衡状态的变化历程。
P-V图上,一个点表示气体的一个热力状态;一条曲线表示一个热力过程。二、膨胀功W(J)气体在热力过程中由于体积发生变化所做的功(又称为容积功)第二节热力过程及过程量一、热力过程规定:热力系统对外界做功为正,外界对热力系统做功为负。由δW=PdV得:
dV>0,膨胀,δW>0,系统对外界做功;
dV<0,压缩,δW<0,外界对系统做功;
dV=0,δW=0,系统与外界之间无功量传递。膨胀,W>0压缩,W<0规定:热力系统对外界做功为正,外界对热力系统做功为负。膨胀,三、热量是系统与外界之间依靠温差来传递的能量形式,用Q表示
q=Q/mJ/kg规定:传入热力系统的热量为正值,即吸热为正;传出热力系统的热量为负值,即放热为负。※热量与功一样,是系统在热力过程中与外界传递的能量形式,因此是过程量,不是状态参数。三、热量四.熵和温熵图熵S的增量等于系统在过程中交换热量除以传热时绝对温度所得的商ds=δq/T1Kg工质的熵的单位J/kgKmKg工质熵的单位J/K※比容ν的变化量标志着有无做功,熵s的变化量标志着有无传热。熵s是一个状态参数ds>0,Q>0,吸热;ds<0,Q<0,放热;ds=0,无热量交换.吸热,Q>0放热Q<0四.熵和温熵图※比容ν的变化量标志着有无做功,熵s的变化量标【热力学第零定律】若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。热平衡系统的状态函数被定义为温度。温度相等是热平衡之必要的条件。
【热力学第零定律】若两个热力学系统中的任何一个系统都和第三个一、热力学第一定律表述为:当热能与其它形式的能量相互转换时,能的总量保持不变。对于一个热力系统:
进入系统的能量-离开系统的能量
=系统内部储存能量的变化量※热力学第一定律是能量转换与守恒定律在热力学上的具体应用,它阐明了热能和其它形式的能量在转换过程中的守恒关系。它表达工质在受热作功过程中,热量、作功和内能三者之间的平衡关系。第三节热力学第一定律一、热力学第一定律第三节热力学第一定律二、内能-工质内部所具有的各种能量总称宏观能量包括:微观能量即系统的内能,包括:宏观能量微观能量内动能内位能内位能与分子间的距离、吸引力有关,是比容的函数;内动能包括移动动能、转动动能和振动动能,是温度的单值函数。★对于理想气体,不考虑分子间的位能,故内能只是分子的内动能,仅与温度有关,是温度的单值函数,用符号u表示,单位J。系统本身所具有的能量包括:动能位能机械能二、内能-工质内部所具有的各种能量总称宏观能量包括:微观能量三、闭口系统的能量方程1、定义:
与外界没有质量交换的系统。
2、能量方程式
Q-W=ΔU故Q=ΔU+W对于微元过程:δQ=dU+δW对于1kg工质:q=Δu+w
(J/Kg)—闭口系统能量方程★以上各项均为代数值,可正可负或零,且不受过程的性质和工质性质的限制。三、闭口系统的能量方程故Q=ΔU+W对于微元过程:δQ=dU焓⑴H=U+pV
焓=流动内能+推动功
⑵焓H没有明确的物理意义:表示流动工质所具有的能量中,取决于热力状态的那部分能量
在大气内进行的化学反应,压强一般保持常值,则有
ΔH=ΔU+pΔV
规定放热反应的焓取负值。熵S为系统的混乱度
dH=dH=TdS+Vdp焓⑴H=U+pV
焓=流动内能+推动功
⑵焓H没有明确的
四、理想气体的比热1、比热的定义和单位热容量:向热力系统加热(或取热)使之温度升高(或降低)1K所需的热量,用C表示。比热:单位质量工质的热容量,用c表示。即c=C/m单位J/(kgK)或c=dq/dT(单位质量的物质作单位温度变化时吸放的热量)
2、比热与过程的关系功量和热量都是过程量,故比热与过程有关。热力过程中最常见的加热过程是保持压力不变和容积不变,因此比热也相应的分为定压质量比热和定容质量比热,分别以符号cP
和cν
表示。绝热指数:K=cP/cν四、理想气体的比热
3、比热与气体性质、温度的关系
实验证明,多数气体的比热随温度的升高而增大,但为使计算简便,不考虑比热随温度的变化,即采用定值比热(或定比热)。
五、理想气体内能的计算
在保持系统容积不变的加热过程中,加热量为:
qν=cν(T2-T1)
由热力学第一定律
q=w+Δu推出:Δu=cv(T2-T1)★内能是一状态量,与热力过程无关,且理想气体的内能只是温度的函数,故上述公式适用于任何热力过程。且w=0,3、比热与气体性质、温度的关系推出:Δu=cv(T2-T第四节理想气体的热力过程工程热力学把热机循环概括为工质的热力循环,热力循环分成几个典型的热力过程—定容、定压、定温和绝热—称为基本热力过程。第四节理想气体的热力过程工程热力学把热机循环概括为工质的热一、定容过程1、定义:过程进行中系统的容积(比容)保持不变的过程。2、过程方程式:ν=常数3、参数间的关系:P1/P2=T1/T2,
P1/T1=P2/T2即:加入工质的热量全部转变为工质的内能。由PV=RT
知,P/T=常数,所以:P1/P2=T1/T2,P1/T1=P2/T2即:加入工质5、过程曲线等容加热温度升高等容放热温度降低2’25、过程曲线等容加热等容放热2’2二、定压过程
1、定义:过程进行中系统的压力保持不变。
2、过程方程式:P=常数3、参数间的关系:由ν/T=常数
ν1/T1=ν2/T2ν1/ν2=T1/T2由热力学第一定律:cp=cν+R
—迈耶公式cp/cν=k—绝热指数二、定压过程P=常数3、参数间的关系:由ν/T=常数ν1/5、过程曲线等压加热对外做功温度升高21等压放热对内做功温度降低2’★T-s图上,等压曲线要比等容曲线平坦(说明在达到相同气体温度下,定压过程要比定容过程吸收更多的热量)。5、过程曲线等压加热21等压放热2’★T-s图上,等压曲线要三、定温过程1、定义:过程进行中系统的温度保持不变的过程。2、过程方程式:T=常数3、参数间的关系:
Pν=RT=常数P1ν1=P2ν2
4、过程量的计算:T=常数
所以
u=0由
q=w+u可得:q=w※加入系统的热量全部转换为系统对外界做的功。三、定温过程P1ν1=P2ν24、过程量的计算:T=5、过程曲线等温压缩对外放热等温膨胀吸热22’5、过程曲线等温压缩等温膨胀22’四、绝热过程
1、定义:过程进行中系统与外界没有热量的传递(q=0→
s=q/T=0,故也称定熵过程)。
2、过程方程式:Pvk=常数(推导略)
K=cp/cν:绝热指数即:外界对系统所做的功全部用来增加系统的内能。四、绝热过程K=cp/cν:绝热指数即:外界对系统所做的功5、过程曲线绝热压缩温度升高绝热膨胀温度降低5、过程曲线绝热压缩绝热膨胀
五、多变过程
在实际的热力过程中,P、ν、T的变化和热量的交换都存在,不能用上述某一特殊的热力过程来分析,需用一普遍的、更一般的过程即多变过程来描述。
1、过程方程式:Pvn=常数n:多变指数。
等压过程;n=1,Pv=常数等温过程;n=k,Pvk=常数绝热过程;n=∞,v=常数等容过程。n=0,P=常数五、多变过程n:多变指数。等压过程;n=1,Pv=常数2、各过程在P-v图上的比较等压线:压力升高部分压力降低部分等容线:膨胀部分压缩部分等温线:温度升高部分温度降低部分绝热线:吸热部分放热部分n=1n=kn=nW<0W>0n从到0,放热→0→吸热;等温线右内能增加,左内能减少。例如压缩机压缩过程:K>n>12、各过程在P-v等压线:压力升高部分等容线:膨胀部分等温线第五节热力学第二定律
重点掌握:
1、热力学第二定律的表述;
2、热力循环的热效率;
3、卡诺循环的热效率。第五节热力学第二定律重点掌握:一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物体传至高温物体。—热量不可能自发地从冷物体转移到热物体。
2、不可能制成一种循环工作的热机,仅从单一的高温热源取热,使之完全转变为有用功,而不向低温热源(冷源)放热。—单热源热机是不存在的。能量传递(热功转换)过程的方向、条件和限度问题,要由热力学第二定律来回答。热力学第二定律的实质是一切自发的过程都是不可逆的。一、热力学第二定律的表述二、热力循环系统从某一状态(初始状态)出发,经历一系列的中间状态,又回到初始状态,这样一个封闭的热力过程称为一个热力循环。(在P-V图上,热力循环是一封闭的曲线。)正向循环—把热能转变为机械功的循环。逆向循环—靠消耗机械功将热量从低温热源传向高温热源的循环。(或称热泵循环)二、热力循环1、循环净功量1-2-3-4-1:顺时针进行的热力过程,过程曲线所围成的面积为正,称为正循环。w
1-4-3-2-1:逆时针进行的热力过程,过程曲线所围成的面积为负,称为负循环。循环净功W=Q1-Q2Q1为1-2-3,工质从高温热源吸热Q2为3-4-1,工质从向低温热源放热1、循环净功量1-2-3-4-1:顺时针进行的热力过程,过程定义:循环净功与从高温热源吸收热量的比值ηT=W/Q1=(Q1-Q2)/Q1=1-Q2/Q1
W:对外作出的循环净功;Q1:循环中吸收的总热量;Q2:循环中放出的总热量。
作用:评价循环的经济性。三、热机循环的热效率定义:循环净功与从高温热源吸收热量的比值三、热机循环的热效率三、卡诺循环(最理想的热机循环)由两个定温过程和两个绝热过程组成的可逆循环。卡诺循环的热效率:1、卡诺循环的热效率取决于高温热源和低温热源的温度,高温热源的温度上升,低温热源的温度下降,则卡诺循环的热效率提高。三、卡诺循环(最理想的热机循环)卡诺循环的热效率:1、卡诺循题:内燃机混合气燃烧温度为2200K,排气最高温度1100K(环境温度300K)计算其卡诺循环最高理论热效率,并指出提高的方法。题:内燃机混合气燃烧温度为2200K,排气最高温度1100K2、卡诺循环的热效率永远小于1。即在循环工作的发动机中,不可能将吸收的热量全部转化为功,必定有部分热量传递给低温热源。3、当T1=T2时,卡诺循环的热效率为0。即在温度平衡的系统中,不可能将热量转化为功(不可能由单一热源循环作功)。
4、当无论什么工质和循环,在一定温度范围T1到T2时之间,不可能制造出热效率超过1-T2/T1的热机。即最高热效率只能接近1-T2/T1。※
这几条结论具有普遍性,适用于一切热机。2、卡诺循环的热效率永远小于1。四、卡诺定理
在两个不同定温热源间工作的任何热机的热效率,不可能大于在同样两个热源间工作的可逆热机的热效率。
推论:
1、一切可逆热机的热效率彼此相等且等于卡诺热机的热效率,不可逆热机的热效率小于可逆热机的热效率。
2、在内燃机上,如果排气温度过高,则内燃机的热效率下降;提高压缩比,使T1升高,则内燃机的热效率升高。四、卡诺定理动力循环往复活塞式燃气轮机增压发动机特点:工质在高温热源吸热;在低温热源放热;对外输出功。动力循环往复活塞式第六节活塞式内燃机的理想循环
为便于分析内燃机的实际工作过程,将内燃机的某个循环的各个实际过程全部抽象的概括为若干个可逆过程,这样得到的一个闭合循环,称为理想循环。
理想化的原则及方法:
1、工质所经历的状态变化为一闭合循环;
2、循环中工质的数量和化学成分始终不变;
3、组成各循环的过程都是可逆的;
4、工质的比热为定值。第六节活塞式内燃机的理想循环为便于分析内燃机的实要求掌握:
1、车用发动机的理想循环各是什么;
2、理想循环各由哪些过程组成;
3、影响理想循环热效率的因素;
4、车用发动机理想循环的比较。要求掌握:一、内燃机的理想循环1、实际循环及理想化实际工作过程:进气、压缩、燃烧、膨胀、排气汽油机的理想循环:
等容加热循环低速柴油机的理想循环:
等压加热循环高速柴油机的理想循环:
混合加热循环一、内燃机的理想循环实际工作过程:进气、压缩、燃烧、膨胀、排2、汽油机的理想循环1-2的压缩过程绝热压缩;2-3的燃烧过程等容加热;3-4的膨胀过程绝热膨胀;4-1的排气过程等容放热。等容加热循环的热效率:
ηT=1-1/εk-1ε--压缩比;k--绝热指数。--等容加热循环Q2Q12、汽油机的理想循环1-2的压缩过程绝热压缩;等容加热循环3、车用柴油机的理想循环
--混合加热循环混合加热循环的热效率:1-2的压缩过程绝热压缩;2-3的燃烧过程等容加热;3-4的燃烧过程等压加热;4-5的膨胀过程绝热膨胀;5-1的排气过程等容放热。ε=V1/V2--压缩比,λ=P3/P2-压力升高比,ρ=V4/V3-预胀比,k--绝热指数.Q1’Q1’’3、车用柴油机的理想循环--混合加热循环混合加热循环的热效4、低速柴油机的理想循环--等压加热循环1-2的压缩过程
绝热压缩;2-3的燃烧过程
等压加热;3-4的膨胀过程
绝热膨胀;4-1的排气过程
等容放热。等容加热循环的热效率:ηT=1-1/εk-1×(ρK-1)/K(ρ-1)4、低速柴油机的理想循环--等压加热循环1-2的压缩过程等容二、影响内燃机理想循环的主要因素
分析循环的主要目的是找出影响循环热效率的因素,找到提高热效率的途径。常用的方法有:
1、解析法:从循环热效率的公式出发进行分析。2、图示法:由P—V图、T—S图入手分析。二、影响内燃机理想循环的主要因素1、压缩比的影响
压缩比对上述三种理想循环的影响是相同的。由热效率的公式:ε,提高循环平均吸热温度,降低循环平均放热温度扩大了循环温差和膨胀比,ηT。当压缩比较小时,热效率随压缩比的增加显著增大;当压缩比较大时,热效率随压缩比的增加增大较少。由试验曲线看出:1、压缩比的影响压缩比对上述三种理想循环的影响是相同的。2、K的影响
由公式看出,K↑ηT↑(混合气较稀,K较大)K取决于工质的性质,双原子气体为1.4;多原子为1.33.3、λ的影响
(1)对定容加热循环,λ↑ηT不变因为λ↑则Q1↑和W↑→Q2/Q1不变。
(2)对混合加热循环,λ↑ηT↑Q1不变,λ↑值增大(Q1v↑)则相对的减少了Q1p所占的比例,而Q2减少,使整个循环的热效率会增大。4、ρ的影响
(1)对等压加热循环,ρ↑ηT↓。(ρ↑→
Q2↑)
(2)对混合加热循环,ρ↑ηT↓2、K的影响比较图中各循环加热过程所对应的面积,得出:
Q2p>Q2m>Q2v所以:
ηtv>ηtm>ηtp三、活塞式内燃机理想循环的比较1、在等压缩比ε
、等加热量Q1条件下比较图中各循环加热过程所对应的面积,三、活塞式内燃机理想循环2、在循环的最高温度、最高压力相同的条件下在T-S图上比较三种循环的加热量和放热量,可以看出:放热量q2都相同,而加热量为:
Q1p>Q1m>Q1v所以:ηtp>ηtm>ηtv
实际内燃机中,由于压缩比选取的不同,有:ηtm
>ηtp>ηtv2、在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度虚拟现实内容制作合作股权协议书3篇
- 二零二五年度农村土地互换与农村能源建设合作协议2篇
- 二零二五年度企业内部停车场车辆停放服务责任协议3篇
- 2025年度职业教育办学许可证转让及就业安置协议3篇
- 二零二五年度典当物品鉴定与评估服务合同3篇
- 2025年度互联网医疗加盟合作协议书3篇
- 二零二五年度互联网公司员工离职保密与商业秘密保护更新协议2篇
- 2025年度内河渔船出售转让与船舶交易资金监管服务合同3篇
- 2025年度金融科技公司股东合伙人合作协议书3篇
- 二零二五年度房产转让背景下的环保责任协议3篇
- JavaScript教案课程设计
- 新改版教科版四年级下册科学教学计划
- 捷豹路虎发动机规格-v6sc3.0升汽油机
- 肺炎试题及答案
- 中外教育简史知识点汇总
- T∕ZZB 2665-2022 免洗手消毒凝胶
- 化粪池计算表格Excel(自动版)
- 2022年人美版美术六年级上册教案全一册
- 超外差调幅收音机课设报告——内蒙古工业大学
- 3.2熔化和凝固-人教版八年级上册课件(21张PPT)pptx
- 2017衢州新城吾悦广场开业安保方案
评论
0/150
提交评论