版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知是方程的一个根,则方程的另一个根为()A.-2 B.2 C.-3 D.32.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5703.将抛物线y=2xA.y=2(x-2)2-3 B.y=2(x-2)24.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一个质地均匀的正六面体骰子,向上的面点数是偶数5.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是()A.60° B.65° C.75° D.80°6.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.7.如图所示几何体的左视图正确的是()A. B. C. D.8.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.9.如图,抛物线的对称轴为直线,则下列结论中,错误的是()A. B. C. D.10.如图,正六边形内接于,正六边形的周长是12,则的半径是()A.3 B.2 C. D.11.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.412.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.40二、填空题(每题4分,共24分)13.抛物线y=2(x−3)2+4的顶点坐标是__________________.14.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度与粗细(横截面面积)之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为的拉面,则做出来的面条的长度为__________.15.方程(x﹣1)2=4的解为_____.16.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.17.在中,若,则是_____三角形.18.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.三、解答题(共78分)19.(8分)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.20.(8分)已知二次函数.(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.21.(8分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.22.(10分)某商场销售一批名牌衬衫,平均每天可售出10件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件,若商场平均每天要盈利600元,每件衬衫应降价多少元?23.(10分)如图1,分别是的内角的平分线,过点作,交的延长线于点.(1)求证:;(2)如图2,如果,且,求;(3)如果是锐角,且与相似,求的度数,并直接写出的值.24.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?25.(12分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E,(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)26.如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?
参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则
1•m=1,解得m=1.
故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x1=-,x1•x1=.要求熟练运用此公式解题.2、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.3、B【解析】根据“左加右减,上加下减”的规律求解即可.【详解】y=2x2向右平移2个单位得y=2(x﹣2)2,再向上平移3个单位得y=2(x﹣2)2+3.故选B.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.4、D【解析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答.【详解】根据图可知该事件的概率在0.5左右,(1)A事件概率为,错误.(2)B事件的概率为,错误.(3)C事件概率为,错误.(4)D事件的概率为,正确.故选D.【点睛】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键.5、D【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.6、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B7、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图8、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】A、由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;B、由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;C、由对称轴为,得,即,故本选项错误,符合题意;D、由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.10、B【分析】根据题意画出图形,求出正六边形的边长,再求出∠AOB=60°即可求出的半径.【详解】解:如图,连结OA,OB,∵ABCDEF为正六边形,
∴∠AOB=360°×=60°,
∴△AOB是等边三角形,∵正六边形的周长是12,∴AB=12×=2,∴AO=BO=AB=2,故选B.【点睛】本题考查了正多边形和圆,以及正六边形的性质,根据题意画出图形,作出辅助线求出∠AOB=60°是解答此题的关键.11、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【详解】:∵AD∥BC,
∴∠OAE=∠OFB,∠OEA=∠OBF,
∴,∴所以相似比为,∴.故选:D.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.12、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.二、填空题(每题4分,共24分)13、(3,4)【解析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.14、1【分析】因为面条的总长度y(cm)是面条粗细(横截面面积)x(cm2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案.【详解】解:根据题意得:y=,过(0.04,3200).
k=xy=0.04×3200=128,
∴y=(x>0),
当x=0.16时,
y==1(cm),
故答案为:1.【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.15、x1=3,x2=﹣1【解析】试题解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案为x1=3,x2=﹣1.16、【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项为:=分子规律为:x的次数为对应项的平方加1,故第n项为:故答案为:.【点睛】本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.17、等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出∠A和∠B的角度,即可得出答案.【详解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案为等腰.【点睛】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值.18、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形三、解答题(共78分)19、(1)线段OD的长为1.(2)存在,DE保持不变.DE=.【解析】试题分析:(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==1,即线段OD的长为1.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.考点:垂径定理;三角形中位线定理.20、(1)证明见解析;(2).【分析】(1)根据二次函数图象与x轴交点关系求解;(2)根据对称轴公式求解.【详解】(1)证明:令y=0,则,∵△===∵≥0,∴>0∴无论取何实数,此二次函数的图像与轴都有两个交点.(2).∵对称轴为x=,∴k=2∴解析式为【点睛】考核知识点:二次函数的性质.21、,-.【分析】先求出程x2+x﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x2+x﹣2=0,∴(x-1)(x+2)=0,∴x1=1,x2=-2,原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.22、平均每天要盈利600元,每件衬衫应降价20元【解析】试题分析:本题考查一元二次方程解决商品销售问题,设每件衬衫应降价x,则每件的盈利为(40-x),每天可以售出的数量为(10+x),由题意得:(40-x)(10+x)=600,解得=10,=20,由于为了扩大销售量,增加盈利,尽快减少库存,所以=20.试题解析:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出10+x,由题意,得(40-x)(10+x)=600,即:(x-10)(x-20)=0,解,得x1=10,x2=20,为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,所以,若商场平均每天要盈利600元,每件衬衫应降价20元.23、(1)证明见解析;(2);(3)当,;当,.【分析】(1)先利用角平分线的性质,得,,再利用外角、三角形内角和进行换算即可;(2)延长AD,构造平行相似,得到,再按条件进行计算;(3)利用△ABC与△ADE相似,得到,所以得到或,再利用三角函数求值.【详解】(1)如图1中∵∴,∵AD平分∴,同理得∵,∴∴(2)延长AD交BC于点F∵∴BE平分∠ABC∴∴∴∴,∵∴(3)∵△ABC与△ADE相似,∴∠ABC中必有一个内角和为90°∵∠ABC是锐角∴当时∵∴∵∴,∵分别是的内角的平分线∴∴∵∴代入解得②当时∵△ABC与△ADE相似∴∵分别是的内角的平分线∴∴此时综上所述,当,;当,【点睛】本题考查了相似三角形的综合题,掌握相似三角形的判定和性质、平行线的判定和性质以及锐角三角函数是解题的关键.24、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+114
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国智慧养老服务行业全国市场开拓战略制定与实施研究报告
- 2025-2030年中国车载视频监控行业并购重组扩张战略制定与实施研究报告
- 2025-2030年中国制氢行业营销创新战略制定与实施研究报告
- 2025-2030年中国柔性OLED行业开拓第二增长曲线战略制定与实施研究报告
- 2025-2030年中国电子纱行业全国市场开拓战略制定与实施研究报告
- 关于煎饼的市场调查问卷
- 2024-2030年中国滚装船行业市场全景监测及投资前景展望报告
- 二年级数学计算题专项练习
- 天燃气安全知识培训课件
- 二零二五年度国有企业保安队伍建设合同范本
- 老年患者跌倒的危险因素及护理研究进展
- 全过程工程咨询作业指导书
- (完整版)形式发票模版(国际件通用)
- 机械设备租赁合同范本简单版(9篇)
- 城市生活垃圾分选系统设计
- 绿色施工管理体系与管理制度管理办法(新版)
- 机动车交通事故快速处理协议书(最新格式)
- 最新拉链厂安全操作规程
- 述职报告评分表
- 变压器交接试验报告(1250)
- LOI外贸采购意向(标准样本)
评论
0/150
提交评论