![内蒙古巴彦淖尔市临河区2022-2023学年数学九上期末学业水平测试试题含解析_第1页](http://file4.renrendoc.com/view/b64ff4a86a4dff9f62141e825bf72025/b64ff4a86a4dff9f62141e825bf720251.gif)
![内蒙古巴彦淖尔市临河区2022-2023学年数学九上期末学业水平测试试题含解析_第2页](http://file4.renrendoc.com/view/b64ff4a86a4dff9f62141e825bf72025/b64ff4a86a4dff9f62141e825bf720252.gif)
![内蒙古巴彦淖尔市临河区2022-2023学年数学九上期末学业水平测试试题含解析_第3页](http://file4.renrendoc.com/view/b64ff4a86a4dff9f62141e825bf72025/b64ff4a86a4dff9f62141e825bf720253.gif)
![内蒙古巴彦淖尔市临河区2022-2023学年数学九上期末学业水平测试试题含解析_第4页](http://file4.renrendoc.com/view/b64ff4a86a4dff9f62141e825bf72025/b64ff4a86a4dff9f62141e825bf720254.gif)
![内蒙古巴彦淖尔市临河区2022-2023学年数学九上期末学业水平测试试题含解析_第5页](http://file4.renrendoc.com/view/b64ff4a86a4dff9f62141e825bf72025/b64ff4a86a4dff9f62141e825bf720255.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是()A.k<1且k≠0 B.k≤1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠02.如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则()A. B. C. D.3.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为()米.A.6.2 B.10 C.11.2 D.12.44.下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.投掷一枚硬币正面朝上是随机事件D.明天太阳从东方升起是随机事件5.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()A. B. C. D.6.按如下方法,将△ABC的三边缩小到原来的,如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF;则下列说法错误的是()A.点O为位似中心且位似比为1:2B.△ABC与△DEF是位似图形C.△ABC与△DEF是相似图形D.△ABC与△DEF的面积之比为4:17.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A. B.2 C. D.8.关于x的一元二次方程中有一根是1,另一根为n,则m与n的值分别是()A.m=2,n=3 B.m=2,n=-3 C.m=2,n=2 D.m=2,n=-29.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.10.如图,下列四个三角形中,与相似的是()A. B. C. D.11.如图,四边形内接于,为延长线上一点,若,则的度数为()A. B. C. D.12.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.14.已知1是一元二次方程的一个根,则p=_______.15.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.16.如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第7个小三角形的面积为_________________17.如图,A是反比例函数图象上的一点,点B、D在轴正半轴上,是关于点D的位似图形,且与的位似比是1:3,的面积为1,则的值为____.18.二次函数中的自变量与函数值的部分对应值如下表:…………则的解为________.三、解答题(共78分)19.(8分)已知:如图,在中,D是AC上一点,联结BD,且∠ABD=∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB=7,求AC的长.20.(8分)已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.21.(8分)如图,已知二次函数与轴交于两点(点在点的左边),与轴交于点.(1)写出两点的坐标;(2)二次函数,顶点为.①直接写出二次函数与二次函数有关图象的两条相同的性质;②是否存在实数,使为等边三角形?如存在,请求出的值;如不存在,请说明理由;③若直线与抛物线交于两点,问线段的长度是否发生变化?如果不会,请求出的长度;如果会,请说明理由.22.(10分)解下列方程(1)2x(x﹣2)=1(2)2(x+3)2=x2﹣923.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.24.(10分)如图1,在中,,以为直径的交于点.(1)求证:点是的中点;(2)如图2,过点作于点,求证:是的切线.25.(12分)为了估计鱼塘中的鱼数,养鱼老汉首先从鱼塘中打捞条鱼,并在每一条鱼身上做好记号,然后把这些鱼放归鱼塘,过一段时间,让鱼儿充分游动,再从鱼塘中打捞条鱼,如果在这条鱼中有条是有记号的,那么养鱼老汉就能估计鱼塘中鱼的条数.请写出鱼塘中鱼的条数,并说明理由.26.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据一元二次方程的根的判别式即可求出答案.【详解】解:由题意可知:△=4﹣4k≥0,∴k≤1,∵k≠0,∴k≤1且k≠0,故选:B.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.2、B【分析】连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.【详解】解:如图,连接BF,
在菱形ABCD中,∠BAC=∠BAD=×100°=50°,
∵EF是AB的垂直平分线,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的对边AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的对称性,∠CDF=∠CBF=30°.
故选:B.【点睛】本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.3、D【分析】先根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度,再加上落在墙上的影长即得答案.【详解】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米,则,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选:D.【点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.4、C【解析】试题解析:A.“经过有交通信号的路口遇到红灯”是随机事件,说法错误.B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C.投掷一枚硬币正面朝上是随机事件,说法正确.D.明天太阳从东方升起是必然事件.说法错误.故选C.5、D【分析】关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=−,与y轴的交点坐标为(0,c).【详解】A.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象不符,故A选项错误;
B.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,开口方向朝下,与图象不符,故B选项错误;
C.由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=−<0,则对称轴应在y轴左侧,与图象不符,故C选项错误;
D.由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=−>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.
故选D.【点睛】此题考查一次函数和二次函数的图象性质,解题关键在于要掌握它们的性质才能灵活解题.6、A【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】∵如图,任取一点O,连结AO,BO,CO,并取它们的中点D、E、F,得△DEF,∴将△ABC的三边缩小到原来的,此时点O为位似中心且△ABC与△DEF的位似比为2:1,故选项A说法错误,符合题意;△ABC与△DEF是位似图形,故选项B说法正确,不合题意;△ABC与△DEF是相似图形,故选项C说法正确,不合题意;△ABC与△DEF的面积之比为4:1,故选项D说法正确,不合题意;故选:A.【点睛】此题主要考查了位似图形的性质,正确的记忆位似图形性质是解决问题的关键.7、D【解析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此种情形不合题意,所以m+n=﹣1+=.8、C【分析】将根是1代入一元二次方程,即可求出m的值,再解一元二次方程,可求出两个根,即可求出n的值.【详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴∴解得x1=1,x2=2∴n=2故选C.【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键.9、C【解析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.10、C【分析】△ABC是等腰三角形,底角是75°,则顶角是30°,结合各选项是否符合相似的条件即可.【详解】由题图可知,,所以∠B=∠C=75°,所以.根据两边成比例且夹角相等的两个三角形相似知,与相似的是项中的三角形故选:C.【点睛】此题主要考查等腰三角形的性质,三角形内角和定理和相似三角形的判定的理解和掌握,此题难度不大,但综合性较强.11、D【分析】根据圆内接四边形的对角互补,先求出∠ADC的度数,再求∠ADE的度数即可.【详解】解:四边形内接于-,.故选:.【点睛】本题考查的是内接四边形的对角互补,也就是内接四边形的外角等于和它不相邻的内对角.12、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,
∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比二、填空题(每题4分,共24分)13、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE为Rt△ACB斜边的中线,∴,在△CEM中,,即,∴CM的最大值为.故答案为:.【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.14、2【分析】根据一元二次方程的根即方程的解的定义,将代入方程中,即可得到关于的方程,解方程即可得到答案.【详解】解:∵1是一元二次方程的一个根∴∴故答案是:【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立.15、1【分析】将关系式h=t2+20t+1转化为顶点式就可以直接求出结论.【详解】解:∵h=t2+20t+1=(t﹣1)2+11,∴当t=1时,h取得最大值,即礼炮从升空到引爆需要的时间为1s,故答案为:1.【点睛】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.16、【分析】记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,求出,,,探究规律后即可解决问题.【详解】解:记原来三角形的面积为s,第一个小三角形的面积为,第二个小三角形的面积为,…,∵,,,∴,∴.故答案为:.【点睛】本题考查了三角形中位线定理,三角形的面积,图形类规律探索等知识,解题的关键是循环从特殊到一般的探究方法,寻找规律,利用规律即可解决问题.17、8【分析】根据△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似比是1:3,得出,进而得出假设BD=x,AE=4x,D0=3x,AB=y,根据△ABD的面积为1,求出xy=2即可得出答案.【详解】过A作AE⊥x轴,∵△ABD是△COD关于点D的位似图形,且△ABD与△COD的位似是1:3,∴,∴OE=AB,∴,设BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面积为1,∴xy=1,∴xy=2,∴AB⋅AE=4xy=8,故答案为:8.【点睛】此题考查位似变换,反比例函数系数k的几何意义,待定系数法求反比例函数解析式,解题关键在于作辅助线.18、或【分析】由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.【详解】解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),∴此抛物线的对称轴为:直线x=-,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(-2,0),∴ax2+bx+c=0的解为:x=-2或1.故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.三、解答题(共78分)19、(1)见详解;(2)【详解】(1)证明:∵∠A=∠A,∠ABD=∠ACB,∴△ABD∽△ACB.(2)解:∵△ABD∽△ACB,∴,∴,∴20、(1)见解析;(2)2【解析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2.又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.21、(1);(2)①对称轴都为直线或顶点的横坐标为2;都经过两点;②存在实数,使为等边三角形,;③线段的长度不会发生变化,值为1.【分析】(1)令,求出解集即可;(2)①根据二次函数与有关图象的两条相同的性质求解即可;②根据,可得到结果;③根据已知条件列式,求出定值即可证明.【详解】解:(1)令,∴,∴,,∵点在点的左边,∴;(2)①二次函数与有关图象的两条相同的性质:(I)对称轴都为直线或顶点的横坐标为2;(II)都经过两点;②存在实数,使为等边三角形.∵,∴顶点,∵,∴,要使为等边三角形,必满足,∴;③线段的长度不会发生变化.∵直线与抛物线交于两点,∴,∵,∴,∴,,∴,∴线段的长度不会发生变化.【点睛】本题主要考查了二次函数综合,结合一次函数、等边三角形的性质求解是关键.22、(1)x1=,x2=;(2)x1=﹣3,x2=﹣1【分析】(1)整理成一般式,再利用公式法求解可得;
(2)利用因式分解法求解可得.【详解】(1)整理,得2x2﹣4x﹣1=0,∵△=(﹣4)2﹣4×2×(﹣1)=24>0,∴x==,得x1=,x2=,(2)整理,得2(x+3)2﹣(x+3)(x﹣3)=0,得(x+3)[2(x+3)﹣(x﹣3)]=0,∴x+3=0或2(x+3)﹣(x﹣3)=0,∴x1=﹣3,x2=﹣1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23、树状图见详解,【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、(1)证明见解析;(2)证明见解析.【分析】(1)连结CD,如图,根据圆周角定理得到∠CDB=90°,然后根据等腰三角形的性质易得点D是BC的中点;(2)连结OD,如图,先证明OD为△ABC的中位线,得到OD∥AC,由于DE⊥AC,则DE⊥OD,于是根据切线的判断定理得到DE是⊙O的切线【详解】(1)连接∵是的直径∴∴∴∴∴点是的中点(2)连接∵∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1 古诗词三首 清平乐·村居(说课稿)-2023-2024学年语文四年级下册统编版
- DB37-T 4416-2021 彩色沥青及沥青混合料技术标准(石油树脂型)
- DB37-T 4385-2021 南水北调东线穿黄河工程运行期水下检测规程
- 保密标准协议书格式
- 华杰东方装修合同范本
- 加工合同范例
- 个人吊顶包工合同范本
- 个人购平房合同范例
- 家具维修与居民生活品质改善策略研究考核试卷
- 华夏保险合同范本
- 初三政治中考重要知识点归纳
- 派出所绩效考核总结分析报告
- 智能型万能式断路器框架开关RMW1、DW45-2000/3P-抽屉式1000A说明
- 客运驾驶人安全考核规程范本
- 2023静脉治疗护理技术操作标准解读
- 先天性肾上腺皮质增生症
- 2024年湖南铁道职业技术学院单招职业技能测试题库及答案解析word版
- 新《安全生产法》全面解读“三管三必须”
- 印刷包装行业复工安全培训课件
- 蜜蜂的社会结构和功能
- 电气八大管理制度
评论
0/150
提交评论