初中数学七年级上数学知识点汇总_第1页
初中数学七年级上数学知识点汇总_第2页
初中数学七年级上数学知识点汇总_第3页
初中数学七年级上数学知识点汇总_第4页
初中数学七年级上数学知识点汇总_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章:有理数及其运算知识点:一、有理数的基础知识1、三个重要的定义(1)正数:大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是正数和负数的分界,不是表示不存在或无实际意义。例1下列说法正确的是()A、一个数前面有“-”号,这个数就是负数;B、非负数就是正数;C、一个数前面没有“-”号,这个数就是正数;D、0既不是正数也不是负数;例2把下列各数填在相应的大括号中8,,0.125,0,,,,正整数集合整数集合负整数集合正分数集合例3如果向南走米记为是米,那么向北走米记为是________,0米的意义是______________。例4若,则是;若,则是;若,则是;若,则是;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。有理数的分类如下:(1)按定义分类:(2)按性质符号分类:概念剖析:=1\*GB3①整数和分数统称为有理数,也就是说如果一个数是有理数,则它就一定可以化成整数或分数;=2\*GB3②正有理数和0又称为非负有理数,负有理数和0又称为非正有理数=3\*GB3③整数和分数都可以化成小数部分为0或小数部分不为0的小数,但并不是所有小数都是有理数,只有有限小数和无限循环小数是有理数;例6若为无限不循环小数且,是的小数部分,则是()A、无理数B、整数C、有理数D、不能确定例7若为有理数,则不可能是()A、整数B、整数和分数C、D、3、数轴概念剖析:=1\*GB3①画数轴时数轴的三要素原点、正方向、单位长度缺一不可;=2\*GB3②从数轴的左边到右边所对应的数逐渐变大=3\*GB3③数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;=4\*GB3④有理数在数轴上都能找到点与之对应,一般地,设是一个正数,则数轴上表示数的点在原点的右边,与原点的距离是个单位长度;表示数的点在原点的左边,与原点的距离是个单位长度。=5\*GB3⑤在数轴上求任意两点a、b的距离L,则有公式,这两个公式选择那个都一样。例8在数轴上表示数3的点到表示数的点之间的距离是10,则数;若在数轴上表示数3的点到表示数的点之间的距离是,则数。例9a,b两数在数轴上的位置如图,则下列正确的是()0A、a+b<0B、ab<0C、<0D、0例10下列数轴画正确的是()01—2—01—2—2D—2—012C01B0A4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。0的相反数是0,互为相反的两个数,在数轴上位于原点的两则,并且与原点的距离相等。概念剖析:=1\*GB3①互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。=2\*GB3②在数轴上离某点的距离等于的点有两个。=3\*GB3③如果数和数互为相反数,则+=0;或;=4\*GB3④求一个数的相反数,只要在这个数的前面加上“—”即可;例如的相反数是;例11下列说法正确的是()A、若两个数互为相反数,则这两个数一定是一个正数,一个负数;B、如果两个数互为相反数,则它们的商为-1;C、如果+=0,则数和数互为相反数;D、互为相反数的两个数一定不相等;例12求出下列各数的相反数=1\*GB3①=2\*GB3②=3\*GB3③=4\*GB3④例13化简下列各数的符号=1\*GB3①=2\*GB3②=3\*GB3③=4\*GB3④知识窗口:=1\*GB3①一个数前面加上“—”号,该数就成了它的相反数;=2\*GB3②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。5、绝对值数轴上表示数的点与原点的距离叫做数的绝对值。(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离。(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:(3)两个负数比较大小,绝对值大的反而小。概念剖析:=1\*GB3①“一个数的绝对值就是数轴上表示该数的点与原点的距离”,而距离是非负,也就是说任何一个数的绝对值都是非负数,即。=2\*GB3②互为相反数的两个数离原点的距离相等,也就是说互为相反数的两个数绝对值相等。例14如果两个数的绝对值相等,那么这两个数是()A、互为相反数B、相等C、积为0D、互为相反数或相等例15已知ab>0,试求的值。例16若|x|=-x,则x是_________数;例17若│χ+3∣+∣y—2∣=0,则=;例19如果两个数和的绝对值相等,则下列说法正确的是()A、B、C、D、不能确定二、有理数的运算1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数。(2)有理数加法的运算律:知识窗口:用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。例21计算下列各式=1\*GB3①=2\*GB3②+2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数。(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;概念剖析:减法是加法的逆运算,用法则“减去一个数等于加上这个数的相反数”即可转化。转化后它满足加法法则和运算律。例22计算:例23月球表面的温度中午是,半夜是,中午比半夜高多少度?例24已知是6的相反数,比的相反数小5,求比大多少?3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac。(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。例25计算下列各式:=1\*GB3①=2\*GB3②=3\*GB3③=4\*GB3④4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。例25倒数是其本身的数有_________;例26计算下列各式:=1\*GB3①=2\*GB3②=3\*GB3③5、有理数的乘方(1)有理数的乘方的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数,0的任何非0次幂都是0,1的任何非0次幂都是1,偶数次幂是1、奇数次幂是;概念剖析:=1\*GB3①“”所表示的意义是n个a相乘,不是n乘以a;=2\*GB3②。因为表示个相乘,而表示个的相反数;=3\*GB3③任何数的偶次幂都得非负数,即。例27=1\*GB3①的意义是_________________________;=2\*GB3②的意义是________________________;=3\*GB3③的意义是_________________________;例28当,时,则_________;例29计算:例30若互为相反数,是自然数,则()A、和互为相反数B、和互为相反数C、和互为相反数D、和互为相反数知识窗口:所有的奇数可以表示为或;所有的偶数可以表示为。6、有理数的混合运算例31计算下列各式=1\*GB3①=2\*GB3②例31已知的绝对值为3、且满足的一元一次方程,则的值为多少?7、科学记数法(1)把一个大于10的数记成的形式,其中是整数位只有一位的数,这种记数方法叫做科学记数法。例32用科学记数法表示下列各数=1\*GB3①1893400000=2\*GB3②800032000=3\*GB3③0.000003578012=4\*GB3④120万人民币;例34用四舍五入法完成下列各题=1\*GB3①_________(精确到万分位)练习:一、选择题:1、下列说法正确的是()A、非负有理数即是正有理数B、0表示不存在,无实际意义C、正整数和负整数统称为整数D、整数和分数统称为有理数2、下列说法正确的是()A、互为相反数的两个数一定不相等B、互为倒数的两个数一定不相等C、互为相反数的两个数的绝对值相等D、互为倒数的两个数的绝对值相等3、绝对值最小的数是()A、1B、0C、–1D、不存在4、计算所得的结果是()A、0B、32C、D、165、有理数中倒数等于它本身的数一定是()A、1B、0C、–1D、±16、(–3)–(–4)+7的计算结果是()A、0B、8C、–14D、–87、(–2)的相反数的倒数是()A、B、C、2D、–28、化简:,则是()A、2B、–2C、2或–2D、以上都不对9、若,则=()A、–1B、1C、0D、310、有理数a,b如图所示位置,则正确的是()A、a+b>0B、ab>0C、b-a<0D、|a|>|b|二、填空题11、(–5)+(–6)=________;(–5)–(–6)=_________。12、(–5)×(–6)=_______;(–5)÷6=___________。13、_________;=________。14、__________;________。15、_________;16、平方等于64的数是___________;__________的立方等于–6417、与它的倒数的积为__________。18、若a、b互为相反数,c、d互为倒数,m的绝对值是2,则a+b=_______;cd=______;m=__________。19、如果a的相反数是–5,则a=_____,|a|=______,|–a–3|=________。20、若|a|=4,|b|=6,且ab<0,则|a-b|=__________。三、计算:(1)(2)(3)(4)(5)(6)四、某工厂计划每天生产彩电100台,但实际上一星期的产量如下所示:星期一二三四五六日增减/辆–1+3–2+4+7–5–10比计划的100台多的记为正数,比计划中的100台少的记为负数;请算出本星期的总产量是多少台?本星期那天的产量最多,那一天的产量最少?第二章:用字母表示数(整式)下列的式子中那些是代数式=1\*GB3①=2\*GB3②=3\*GB3③=4\*GB3④=5\*GB3⑤=6\*GB3⑥=7\*GB3⑦=8\*GB3⑧57是代数式的有_________________________(只填序号);例2、下列各式中不是整式的是()A、πB、0C、D、a+b=b+a5、书写代数式的规定(1)数字与字母、字母与字母相乘时,乘号可以省略不写或用“·”代替,省略乘号时,数字因数应写在字母因数的前面,数字是带分数时要改写成假分数,数字与数字相乘时仍要写“×”号。(2)代数式中出现除法运算时,一般要写成分数的形式。(3)用代数式表示某一个量时,代数式后面带有单位,如果代数式是和、差形式,要用括号把代数式括起来。例3、下列个代数式中=1\*GB3①=2\*GB3②=3\*GB3③人=4\*GB3④2·5=5\*GB3⑤书写规范的有_________________________(只填序号);6、单项式由数与字母的积组成的代数式叫做单项式,其中数因数叫做单项式的系数,所有字母因数的指数之和叫做单项式的次数。单独的一个数或字母也叫做单项式。概念剖析:=1\*GB3①单独的一个数作为单项式时,其系数就是它本身,次数为0;单独的一个字母作为单项式时,其系数就是1,次数为它本身的次数;例5、下列代数式中,=1\*GB3①=2\*GB3②1=3\*GB3③=4\*GB3④=5\*GB3⑤=6\*GB3⑥=7\*GB3⑦=8\*GB3⑧是单项式的有(只填序号);例6、单项式是关于、的4次单项式,其系数是6,求和的值;例7、若单项式与单项式相等,则,;8、多项式几个多项式的和叫做多项式,其中、每个单项式都叫做多项式的项,不含字母的项叫做常数项,次数最高项的次数叫做该多项式的次数,每个单项式的系数都是多项式的系数;如果一个多项式有项,且次数为,则我们称该多项式为次项式。例8、多项式=1\*GB3①是由哪些项组成,系数是,次数;=2\*GB3②是由哪些项组成,系数是,次数;例9、若是关于、的四次四项式,则;例10、=1\*GB3①若是关于、的四次三项式,则;=2\*GB3②若是关于、的多项式,且不含一次项则;9、整式单项式和多项式统称整式二、代数式的计算1、同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项,常数项也是同类项。概念剖析:判断同类项的标准有两条:(1)所含字母相同;(2)相同字母的指数也分别相例15、若与是同类项,则_______,________;2、合并同类项合并同类项法则:(1)系数相加,所得结果作为系数;(2)字母和字母的指数不变。例11、若单项式与的和仍是单项式,则;3、去括号去括号法则:(1)括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项符号都不改变;(2)括号前是“–”号,把括号和它前面的“–”号去掉后,原括号里各项的符号都要改变。例12、将下列各式的括号去掉4、整式的加减概念剖析:整式加减运算的步骤:(1)去括号;(2)判断同类项;(3)合并同类项;5、代数式的值的计算代数式的值的计算方法:=1\*GB3①从已知出发去求未知(向前看);=2\*GB3②从未知出发去找未知和已知关系(回头看);=3\*GB3③从已知和未知同时出发待相遇去找未知和已知关系(来回赶);例14、已知,,求的值;例15、;已知,求代数式的值;例16、当时,求代数式的值;例17、已知时,求代数式的值例18、若,,则;例19、已知,则;例20、已知:均为有理数,且、、,则的最大值为。三、探索规律例31、观察下列算式:、、、、、、、……用你发现的规律写出的末位数字是例32、将一张长方形的纸对折,如下图所示,可得到1条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到7条折痕,那么对折4次可以得到条折痕;如果对折次,可以得到条折痕。第3次对折第2次对折第1次对折第3次对折第2次对折第1次对折例33、民公园的侧门口有9级台阶,小聪一步只能上1级台阶或2级台阶,小聪发现当台阶数分别为1级、2级、3级、4级、5级、6级、7级……逐渐增加时,上台阶的不同方法的种数依次为1、2、3、5、8、13、21……这就是著名的斐波那契数列.那么小聪上这9级台阶共有种不同方法;例34、观察下列顺序排列的等式:9×0十1=1,9×1+2=11,9×2+3=21,9×3+4=31,9×4+5=4l猜想:第年n个等式应35题为。35题例35、如图,是用火柴棍摆出的一系列三角形图案,按这种方式摆下去,当每边上摆20(即n=20)时,需要的火柴棍总数为根。36题例36、如图,把一个面积为1的正方形等分成两个面积为的矩形,接着把面积为的矩形分成两个面积为的矩形,再把面积为的矩形等分成两个面积为的矩形,如此进行下去.试利用图形揭示的规律计算:。36题例37、观察下列等式9—l=8,16—4=12,25—9=16,36—16=20,……这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来:。例38、给出下列算式:l2+1=1×2,22+2=2×3,32+3=3×4,……观察上面一列算式,你能发现什么规律,用代数式子表示这个规律:。例41、用黑白两种颜色的正六边形地面砖按如下所示的规律.拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第n个图案中有白色地面砖块.练习题: 一、选择题:2、用代数式表示比y的2倍少1的数,正确的是()A、2(y–1)B、2y+1C、2y–1D、1–2y4、当时,代数式的值是()A、B、C、D、5、已知公式,若m=5,n=3,则p的值是()A、8B、C、D、6、下列各式中,是同类项的是()A、B、C、D、二、填空题:9、当m=2,n=–5时,的值是__________________。10、化简__________________________________。三、解答题:11、已知当时,代数式的值是3,求代数式的值。12、一个塑料三角板,形状和尺寸如图所示,(1)求出阴影部分的面积;(2)当a=5cm,b=4cm,r=1cm时,计算出阴影部分的面积是多少。13、已知A=x–2y+2xy,B=3x–6y+4xy求3A–B。14、代数式的值为3,求代数式的值是多少15、观察下面一组式子:(1);(2);(3)(4)……写出这组式子中的第(10)组式子是_______________________________;第(n)组式子是___________________________________;利用上面的规建计算:=__________________;16、代简求值:,其中。第三章:一元一次方程知识点:一、方程的有关概念1、方程的概念(1)含有未知数的等式叫方程。(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程。且一元一次方程的一般形式为:概念剖析:=1\*GB3①方程一定是等式,但等式不一定都是方程,只有含未知数的等式叫方程;=2\*GB3②等式:用等号“=”表示相等关系的式子叫做等式;=3\*GB3③一元一次方程的条件:是方程;只含有一个未知数;未知数的指数是1;知数的系数不为0;例1、下列式子是方程的是()A、B、C、D、例2、下列方程是一元一次方程的是()A、B、C、D、例3、已知方程是关于的一元一次方程,求、、的值;2、等式的基本性质(1)等式两边同时加上(或减去)同一个数或代数式,所得结果仍是等式。若,则或。(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。若,则或;(3)对称性:等式的左右两边交换位置,结果仍是等式。若,则;(4)传递性:如果,且,那么,这一性质叫等量代换。例4、用适当的数或式子填空=1\*GB3①如果,那么____________;=2\*GB3②如果,那么____________;=3\*GB3③如果,那么___________________;=4\*GB3④如果,那么___________________;二、解方程1、解方程及解方程的解的含义求得方程的解的过程,叫做解方程。使方程的左、右两边的值相等的未知数的值,叫做方程的解。例5、方程的解为____________________;例6、如果是方程的解,则_________________;例7、程的解为,则的值为()A、2B、22C、10D、—2例8若与互为相反数,则_____________,__________;2、移项的有关概念移项必变号3、解一元一次方程的步骤解一元一次方程的步骤主要依据注意问题1、去分母等式的性质2注意拿分母的最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号。2、去括号去括号法则、乘法分配律严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号。3、移项等式的性质1越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面。4、合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变。5、系数化为1等式的性质2两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒。6、检验例9、解程解:根据()得:()得:根据()得:()得:根据()得:请选择正确的答案填如上面的括号内A、去括号B、合并同类项C、方程同解原理1D、方程同解原理2例10、各方程=1\*GB3①=2\*GB3②=3\*GB3③=4\*GB3④二、列方程初步(列代数式)(一)行程问题相遇问题:S=(V1+V2)t追及问题:S=(V1-V2)t从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,求甲乙两地相距多少千米?

2.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度。

3.某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?

5.一列客车长200m一列货车长280m在平行的轨道上相向行驶从两车头相遇到两车尾相离经过16秒已知客车与货车的速度之比是3∶2问两车每秒各行驶多少米?

7.休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?(二)行船问题:V顺=V静+V水V逆=V静-V水一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?(三)工程问题:工作总量=工作效率*工作时间*工作人数工作效率=工作总量/工作时间/工作人数1.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?2.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作。

3.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;

(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?

(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?

(3)如果将两管同时打开,每小时的效果如何?如何列式?

(4)如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?(四)和差倍分问题(生产、做工等各类问题):

4.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?

5.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?

7.某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?

8.为了搞好水利建设,某村计划修建一条长800米,横断面是等腰梯形的水渠.

(1)设计横断面面积为1.6米2,渠深1米,水渠的上口宽比渠底多0.8米,求水渠上口宽和渠底宽;

(2)某施工队承建这项工程,计划在规定的时间内完成,工作4天后,改善了设备,提高了工效,每天比原计划多挖水渠10米,结果比规定的时间提前2天完成任务,求计划完成这项工程需要的天数。(五)比赛积分问题:

1.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了道题。

(六)年龄问题:

1.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄

(七)调配问题:

1.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?

2.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

(八)分配问题:

2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?

3.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。

(九)配套问题:

1.包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?

2.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

(十)增长率问题:

6.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。(十一)利润与利润率:

1.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利15元,这种服装每件的成本为_________.

2某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售

3.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

(十二)储蓄问题

1.本人三年前存了一份3000元的教育储蓄,今年到期时的本利和为3243元,请你帮我算一算这种储蓄的年利率。若年利率为x%,则可列方程__________________________。(年存储利息=本金×年利率×年数)

(十三)数字问题:

1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。

2.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。

3.将连续的奇数1,3,5,7,9…,排成如下的数表:

(1)十字框中的五个数的平均数与15有什么关系?

(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.

(十四)几何问题:

1.将棱长为20cm的正方体铁块没入盛水量筒中,已知量筒底面积为12cm2,问量筒中水面升高了多少cm?(十五)方案设计与成本分析:

1.牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶(每天可销售8吨),每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.

请你帮牛奶加工厂设计一种方案,使这8吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润.

2.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠。该班需球拍5副,乒乓球若干盒(不小于5盒)。问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家鉴定月租车合同,个体车主的收费是3元/千米,国营出租公司的月租费为2000元,另外每行驶1千米收2元,试根据形式的路程的多少讨论用哪个公司的车比较合算?某种酒精溶液里纯酒精与水的比例为1︰2,现在加进纯酒精120后配成浓度为75%的酒精溶液,问原有酒精溶液多少克?右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是a,则六边形的周长是.右图是某风景区的旅游路线示意图,其中B、C、D为风景点,E为两条路的交叉点,图中的数据为相应两点间的路程(单位:),以学生从A处出发,以2的速度步行游览,每个景点的逗留时间均为0.5小时。CEBDA11.20.411.6当他沿着路线CEBDA11.20.411.6共用了3小时,求C—E的路程;若此学生打算从A处出发,步行速度与在每个景点逗留的时间不变,且在4小时内看完三个景点返回到A处,请你为他设计一条步行路线,并说明你的设计理由(不考虑其他因素)。练习题:一、填空题:1、请写出一个一元一次方程:_____________________。2、如果单项式与是同类项,则m=____________。3、如果2是方程的解,求a=_____________。4、代数式的值是互为相反数,求x=_______________。5、如果|m|=4,那么方程的解是___________________。6、在梯形面积公式S=中,已知S=10,b=2,h=4求a=_________。7、方程是一元一次方程,则______________。二、选择题:1、三个连续的自然数的和是15,则它们的积是()A、125B、210C、64D、1202、下列方程中,是一元一次方程的是()(A)(B)(C)(D)3、方程的解是()(A)(B)(C)(D)4、已知等式,则下列等式中不一定成立的是()(A)(B)(C)(D)5、解方程,去分母,得()(A)(B)(C)(D)6、下列方程变形中,正确的是()(A)方程,移项,得(B)方程,去括号,得(C)方程,未知数系数化为1,得(D)方程化成7、重庆力帆新感觉足球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3:5,要求出黑皮、白皮的块数,若设黑皮的块数为,则列出的方程正确的是()(A)(B)(C)(D)8、珊瑚中学修建综合楼后,剩有一块长比宽多5m、周长为50m的长方形空地.为了美化环境,学校决定将它种植成草皮,已知每平方米草皮的种植成本最低是元,那么种植草皮至少需用()(A)元;(B)元;(C)元;(D)元.三、解方程:1、2、3、4、5、6、已知多项式是否存在,使此多项式与无关?若存在,求出的值;若不存在,说明理由。四、应用题:1、在日历上,小明的爷爷生日那天的上、下、左、右4天之和为80,你能说出小明的爷爷是生日是哪天吗?请说明你的理由。2、把一段铁丝围成长方形时,发现长比宽多2cm,围成一个正方形时,边长正好为4cm,求当围成一个长方形时的长和宽各是多少?3、用一个底面半径为4cm,高为12cm的圆柱形杯子向一个底面半径为10cm的大圆柱形杯子倒水,倒了满满10杯水后,大杯里的水离杯口还有10cm,大杯子的高底是多少?4、某单位去年为全体职工投保了团体人身意外伤害保险,如果每年的保险率是0.2%,每人的保险金额都是5000元,这个单位去年向保险公司交纳了1200元的保险费,该单位去年共有职工多少人?第四章:图形的初步认识一、基本概念(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。1、几何图形平面图形:三角形、四边形、圆等。主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。(2)点动成线,线动成面,面动成体。(二)直线、射线、线段1、基本概念直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线。简单地:两点确定一条直线。3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。图形:AMB符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM。6、线段的性质:两点的所有连线中,线段最短。简单地:两点之间,线段最短。7、两点的距离:连接两点的线段长度叫做两点的距离。8、点与直线的位置关系(1)点在直线上(2)点在直线外。(三)角1、角:由公共端点的两条射线所组成的图形叫做角。2、角的表示法(四种):3、角的度量单位及换算4、角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出12个角。(2)借助量角器能画出给定度数的角。(3)用尺规作图法。8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角。其中∠1是∠2的余角,∠2是∠1的余角。(2)若∠1+∠2=180°,则∠1与∠2互为补角。其中∠1是∠2的补角,∠2是∠1的补角。(3)余(补)角的性质:等角的补(余)角相等。10、方向角(1)正方向(2)北(南)偏东(西)方向练习1、下列说法中正确的是()

A、延长射线OP B、延长直线CDC、延长线段CD D、反向延长直线CD3、两条直线相交有几个交点?三条直线两两相交有几个交点?四条直线两两相交有几个交点?思考:n条直线两两相交有几个交点?4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,最多可画多少条直线?画出图来.5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?6、已知线段AB=4厘米,延长AB到C,使BC=2AB,取AC的中点P,求PB的长.7\如图,∠AOC和∠BOD都是直角,且∠AOB=150°,求∠COD的度数。课堂练习与作业(二)一、填空(54分)计算:30.26°=____°____′____″;18°15′36″=______°;36°56′+18°14′=____;108°-56°23′=________;27°17′×5=____;15°20′÷6=____(精确到分)60°=____平角;直角=______度;周角=______度。(第4题)(第4题)BD如图,∠ACB=90°,∠CDA=90°,写出图中BD(1)所有的线段:_______________;(2)所有的锐角:________________CA(3)与∠CDA互补的角:_______________CA....ADCB5、如图,BC=4cm....ADCB6.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________7、一个角与它的余角相等,则这个角是______,它的补角是_______8、三点半时,时针和分针之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论