牛头刨床说明书_第1页
牛头刨床说明书_第2页
牛头刨床说明书_第3页
牛头刨床说明书_第4页
牛头刨床说明书_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

文档可自由编辑打印文档可自由编辑打印文档可自由编辑打印机械原理课程设计说明书题目:牛头刨床机构方案分析2009年11月5日目录一、机构简图和已知条件 -2-二、滑枕初始位置及行程H的确定方法 -2-三、杆组的拆分方法及所调用的杆组子程序中虚参与实参对照 -2-四、程序中主要标识符说明: -5-五、飞轮转动惯量的计算方法: -5-六、自编程序及运行结果 -5-1)运动分析 -5-2)静力分析 -11-3)飞轮转动惯量: -19-七、综合比较方案a和方案b -24-八、主要收获和建议: -25-收获: -25-建议: -25-九、主要参考文献: -25-一、机构简图和已知条件(图a,b)所示为两种牛头刨床主机构的运动简图,已知,l1=0.1m,l0=0.4m,l3=0.75m,l4=0.15m,ly=0.738m,l′3=0.375m,a=0.05m,b=0.15,c=0.4m,d=0.1m。只计构件3、5的质量,其余略去不计,m3=30kg,Js3=0.7kg·m2,m5=95kg。工艺阻力Q如图所示,Q=9000N。主轴1的转速为60r/min(顺时针方向),许用运转不均匀系数[δ]=0.03。二、滑枕初始位置及行程H的确定方法滑枕初始位置为主动件在机架左侧垂直3构件时对应的位置,此时滑枕达到左极限位置;滑枕行程H的确定方法由运动分析的结果读出。方案a滑枕5的左极限为-0.337,右极限为0.038,所以行程H为0.375;方案b滑枕5的左极限为-0.187,右极限为0.187,所以行程H为0.374。三、杆组的拆分方法及所调用的杆组子程序中虚参与实参对照方案a:拆分杆组:杆组子程序中虚参与实参对照表:1)调用bark函数求2点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值1201r120.00.0twepvpap2)调用rprk函数求构件3的运动参数。形式参数mn1n2k1k2r1r2vr2ar2twepvpap实值132320.0&r2&vr2&ar2twepvpap3)调用bark函数求4点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值30430.0r340.0twepvpap4)调用rrpk函数求5点的位置和5构件的运动参数。形式参数mn1n2n3k1k2k3r1r2vr2ar2twepvpap实值-1465456r45&r2&vr2&ar2twepvpap5)调用bark函数求构件3的质心9点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值30930.0r34/20.0twepvpap6)调用bark函数求构件5的8点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值50850.0r58-161.56*drTwepvpap7)调用bark函数求构件5的工艺阻力7点的运动参数。形式参数n1n2n3kr1r2gamTwepvpap实值50750.0r57165.96*drTwepvpap8)调用rrpf函数求5点的反作用力。形式参数n1n2n3ns1ns2nn1nn2nexfk1k2pvpaptwefr实值41050807745pvpaptwefr9)调用rprf函数求2点的反作用力。形式参数n1n2ns1ns2nn1nn2nexfk1k2pvpaptwefrfkpk实值329040032pvpaptwefrfkpk10)调用barf函数求1点的反作用力。形式参数n1ns1nn1k1papefrtb实值1021papefr&tb方案b:拆分杆组:杆组子程序中虚参与实参对照表:1)调用bark函数求2点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值1201r120.00.0twepvpap2)调用rprk函数求构件3的运动参数。形式参数mn1n2k1k2r1r2vr2ar2twepvpap实值132320.0&r2&vr2&ar2twepvpap3)调用bark函数求4点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值30430.0r340.0twepvpap4)调用rppk函数求5点的位置和5构件的运动参数。形式参数n1n2n3n4k1k2k3r1gam1gam2r2vr2ar2r3vr3ar3实值46454560.00.0pi/2&r2&vr2&ar2&r3&vr3&ar3形式参数twepvpap实值twepvpap5)调用bark函数求构件3的质心9点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值30930.0r34/20.0twepvpap6)调用bark函数求构件5的8点的运动参数。形式参数n1n2n3kr1r2gamtwepvpap实值50850.0r58-161.56*drTwepvpap7)调用bark函数求构件5的工艺阻力7点的运动参数。形式参数n1n2n3kr1r2gamTwepvpap实值50750.0r57165.96*drTwepvpap8)调用rppf函数求5点的反作用力。形式参数n1n2n3n4ns1ns2nn1nn2nextk1k2k3pvp实值464508077456pvp形式参数aptwefrfkpk实值aptwefrfkpk9)调用rprf函数求2点的反作用力。形式参数n1n2ns1ns2nn1nn2nexfk1k2pvpaptwefrfkpk实值329040032pvpaptwefrfkpk10)调用barf函数求1点的反作用力。形式参数n1ns1nn1k1papefrtb实值1021papefr&tb四、程序中主要标识符说明:n:关键点,k:构件号,r:距离,gam:关键点位置角度,m:装配模式,ns:质心,nn:外力作用点,fr:运动副反力,bt:反力方向fk:内移动副反力,pk:内移动副反力作用点,fe:工艺阻力,tb:平衡力矩,extf():工艺阻力函数,nexf:工艺阻力作用点,dr:度转化弧度,sm:质量,sj:转动惯量,Td:驱动力矩,Tr:阻力矩,E:盈亏功,b:不均匀系数,Jf:飞轮转动惯量五、飞轮转动惯量的计算方法:(1)一周期内驱动力矩功等于阻力功,所以有:Φt*Td=1/2*△φ(Tro+Tr1)+1/2*△φ(Tr1+Tr2)+···+1/2*△φ(Trn-1+Trn)因为Trn=Tro,所以由上式可得:Td=△φ/Φt∑Tri=1/n∑Tri(2)间隔i-1、i内的盈亏功变化量△Ε:△Ε=△φTd-1/2*△φ(Tri+Tri-1)(3)计算各点的盈亏功Εi:Εi=Εi-1+△Ε(4)找出最大和最小盈亏功:Εmax,Εmin(5)计算飞轮转动惯量Jf:Jf=(Εmax-Εmin)/W㎡[δ]六、自编程序及运行结果1)运动分析方案a程序:#include"graphics.h"#include"subk.c"#include"draw.c"main(){staticdoublep[20][2],vp[20][2],ap[20][2],del;staticdoublet[10],w[10],e[10],pdraw[370],vpdraw[370],apdraw[370];staticintic;doubler12,r45,r34;doubler2,vr2,ar2;doublepi,dr;inti;FILE*fp;char*m[]={"p","vp","ap"};r12=0.1;r45=0.15;r34=0.75;pi=4.0*atan(1.0);w[1]=-2*pi;t[6]=0.0;w[6]=0.0;e[6]=0.0;e[1]=0.0;del=15.0;p[3][1]=0.0;p[3][2]=-0.4;p[1][1]=0.0;p[1][2]=0.0;p[6][1]=0.0;p[6][2]=0.338;dr=pi/180.0;t[6]=0.0*dr;printf("\nThe KinematicParameters ofPoint5\n");printf("NoTHETA1S5V5A5\n");printf("degmm/sm/s/s\n");if((fp=fopen("file1","w"))==NULL){printf("Can'topenthisfile.\n");exit(0);}fprintf(fp,"\nTheKinematicParametersofPoint5\n");fprintf(fp,"NoTHETA1S5V5A5\n");fprintf(fp," degmm/sm/s/s");ic=(int)(360.0/del);for(i=0;i<=ic;i++){ t[1]=(double)(270*dr-acos(0.1/0.4)-(i)*del*dr); bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rprk(1,3,2,3,2,0.0,&r2,&vr2,&ar2,t,w,e,p,vp,ap); bark(3,0,4,3,0.0,r34,0.0,t,w,e,p,vp,ap); rrpk(-1,4,6,5,4,5,6,r45,&r2,&vr2,&ar2,t,w,e,p,vp,ap); printf("\n%2d%12.3f%12.3f%12.3f%12.3f",i+1,t[1]/dr, p[5][1],vp[5][1],ap[5][1]);fprintf(fp,"\n%2d%12.3f%12.3f%12.3f%12.3f",i+1,t[1]/dr, p[5][1],vp[5][1],ap[5][1]);pdraw[i]=p[5][1];vpdraw[i]=vp[5][1];apdraw[i]=ap[5][1];if((i%16)==0){getch();}}fclose(fp);getch();draw1(del,pdraw,vpdraw,apdraw,ic,m);}运行结果:TheKinematicParametersofPoint5NoTHETA1S5V5A5 degmm/sm/s/s1194.478-0.3370.0007.2512179.478-0.3310.2735.8783164.478-0.3150.4924.6884149.478-0.2910.6653.6115134.478-0.2600.7942.5936119.478-0.2250.8821.6237104.478-0.1870.9300.715889.478-0.1480.942-0.123974.478-0.1090.921-0.9031059.478-0.0720.867-1.6681144.478-0.0370.781-2.4951229.478-0.0070.657-3.4701314.4780.0170.489-4.67114-0.5220.0330.265-6.10815-15.5220.038-0.022-7.66016-30.5220.030-0.371-9.00017-45.5220.006-0.762-9.57818-60.522-0.033-1.148-8.64619-75.522-0.088-1.450-5.45920-90.522-0.152-1.571-0.05421-105.522-0.216-1.4505.69922-120.522-0.270-1.1289.21023-135.522-0.308-0.7239.82024-150.522-0.330-0.3338.74625-165.522-0.3370.0007.251方案a滑枕的位移、速度和加速度线图:注:说明书中的各种线图都是按步长为1.0时运行的。方案b程序:#include"graphics.h"#include"subk.c"#include"draw.c"main(){staticdoublep[20][2],vp[20][2],ap[20][2],del;staticdoublet[10],w[10],e[10],pdraw[370],vpdraw[370],apdraw[370];staticintic;doubler12,r34;doubler2,vr2,ar2,r3,vr3,ar3;doublepi,dr;inti;FILE*fp;char*m[]={"p","vp","ap"};r12=0.1;r34=0.75;pi=4.0*atan(1.0);w[1]=-2*pi;t[6]=0.0;w[6]=0.0;e[6]=0.0;e[1]=0.0;del=15.0;p[3][1]=0.0;p[3][2]=-0.4;p[1][1]=0.0;p[1][2]=0.0;p[6][1]=0.0;p[6][2]=0.338;dr=pi/180.0;t[6]=0.0*dr;printf("\nThe KinematicParameters ofPoint5\n");printf("NoTHETA1S5V5A5\n");printf("degmm/sm/s/s\n");if((fp=fopen("file1","w"))==NULL){printf("Can'topenthisfile.\n");exit(0);}fprintf(fp,"\nTheKinematicParametersofPoint5\n");fprintf(fp,"NoTHETA1S5V5A5\n");fprintf(fp," degmm/sm/s/s");ic=(int)(360.0/del);for(i=0;i<=ic;i++){ t[1]=(double)(270*dr-acos(0.1/0.4)-(i)*del*dr); bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap); rprk(1,3,2,3,2,0.0,&r2,&vr2,&ar2,t,w,e,p,vp,ap); bark(3,0,4,3,0.0,r34,0.0,t,w,e,p,vp,ap); rppk(4,6,4,5,4,5,6,0.0,0.0,pi/2,&r2,&vr2,&ar2,&r3,&vr3,&ar3,t,w,e,p,vp,ap); printf("\n%2d%12.3f%12.3f%12.3f%12.3f",i+1,t[1]/dr, p[5][1],vp[5][1],ap[5][1]);fprintf(fp,"\n%2d%12.3f%12.3f%12.3f%12.3f",i+1,t[1]/dr, p[5][1],vp[5][1],ap[5][1]);pdraw[i]=p[5][1];vpdraw[i]=vp[5][1];apdraw[i]=ap[5][1];if((i%16)==0){getch();}}fclose(fp);getch();draw1(del,pdraw,vpdraw,apdraw,ic,m);}运行结果:TheKinematicParametersofPoint5NoTHETA1S5V5A5 degmm/sm/s/s1194.478-0.1880.0007.4022179.478-0.1820.2785.9403164.478-0.1650.4974.6344149.478-0.1410.6663.5035134.478-0.1100.7912.5136119.478-0.0750.8771.6197104.478-0.0380.9270.782889.4780.0010.942-0.028974.4780.0400.924-0.8391059.4780.0780.872-1.6791144.4780.1130.784-2.5781229.4780.1430.656-3.5771314.4780.1670.484-4.71914-0.5220.1820.260-6.03715-15.5220.187-0.022-7.50716-30.5220.180-0.365-8.92317-45.5220.156-0.757-9.71418-60.5220.117-1.151-8.85619-75.5220.062-1.458-5.40320-90.522-0.002-1.5710.21021-105.522-0.066-1.4425.73122-120.522-0.120-1.1268.99323-135.522-0.159-0.7299.69824-150.522-0.181-0.3398.83525-165.522-0.1870.0007.402方案b滑枕的位移、速度和加速度线图:方案a和方案b的运动比较,由运行结果和运动线图知:方案a和方案b运动的情况相似,但方案a去时的速度的速度不均匀系数δ=1.501,回时的速度不均匀系数δ=1.7448;方案b去时的速度不均匀系数δ=1.507,回时的速度不均匀系数δ=1.745。方案a去时的平均速度大于方案b去时的平均速度,回来时的方案a的平均速度小于方案b的平均速度。2)静力分析方案a程序:#include"graphics.h"#include"subk.c"#include"subf.c"#include"draw.c"main(){staticdoublep[20][2],vp[20][2],ap[20][2],del;staticdoublet[10],w[10],e[10],tbdraw[370],tb1draw[370];staticdoublesita1[370],fr1draw[370],sita2[370],fr2draw[370],sita3[370],fr3draw[370];staticdoublefr[20][2],fe[20][2],fk[20][2],pk[20][2],tb,tb1,fr1,bt1,fr3,bt3,we1,we2,we3,we4,we5;staticintic;doubler12,r34,r45,r58,r57;doublepi,dr;doubler2,vr2,ar2;inti;FILE*fp;char*m[]={"tb","tb1","fr1","","fr2"};sm[3]=30.0;sm[5]=95.0;sj[3]=0.7;sj[5]=0.0;r12=0.1;r34=0.75;r45=0.15;r58=sqrt(0.05*0.05+0.15*0.15);r57=sqrt(0.10*0.10+0.40*0.40);pi=4.0*atan(1.0);dr=pi/180.0;t[6]=0.0;w[6]=0.0;e[6]=0.0;w[1]=-2*pi;e[1]=0.0;del=15.0;p[3][1]=0.0;p[3][2]=-0.4;p[1][1]=0.0;p[1][2]=0.0;p[6][1]=0.0;p[6][2]=0.338;printf("\nTheKineto-staticAnalysisofaSix-barLinkase\n");printf("NOTHETA1fr1sita1fr3sita3tbtb1\n");printf("degNradianNradianN.mN.m");if((fp=fopen("file","w"))==NULL){printf("Can'topenthisfile.\n");exit(0);}fprintf(fp,"\nTheKineto-staticAnalysisofaSix-barLinkase\n");fprintf(fp,"NOTHETA1fr1dita1fr3sita3tbtb1\n");fprintf(fp,"degNradianNradianN.mN.m\n");ic=(int)(360.0/del);for(i=0;i<=ic;i++){t[1]=(double)(270*dr-acos(0.1/0.4)-(i)*del*dr);bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);rprk(1,3,2,3,2,0.0,&r2,&vr2,&ar2,t,w,e,p,vp,ap);bark(3,0,4,3,0.0,r34,0.0,t,w,e,p,vp,ap);rrpk(-1,4,6,5,4,5,6,r45,&r2,&vr2,&ar2,t,w,e,p,vp,ap);bark(3,0,9,3,0.0,r34/2,0.0,t,w,e,p,vp,ap);bark(5,0,8,5,0.0,r58,-161.56*dr,t,w,e,p,vp,ap);bark(5,0,7,5,0.0,r57,165.96*dr,t,w,e,p,vp,ap);rrpf(4,10,5,0,8,0,7,7,4,5,p,vp,ap,t,w,e,fr);rprf(3,2,9,0,4,0,0,3,2,p,vp,ap,t,w,e,fr,fk,pk);barf(1,0,2,1,p,ap,e,fr,&tb);fr1=sqrt(fr[1][1]*fr[1][1]+fr[1][2]*fr[1][2]);bt1=atan2(fr[1][2],fr[1][1]);fr3=sqrt(fr[3][1]*fr[3][1]+fr[3][2]*fr[3][2]);bt3=atan2(fr[3][2],fr[3][1]);we1=0.0;we2=0.0;we3=-(ap[9][1]*vp[9][1]+(ap[9][2]+9.81)*vp[9][2])*sm[3]-e[3]*w[3]*sj[3];we4=0.0;extf(p,vp,ap,t,w,e,7,fe);we5=-ap[8][1]*vp[8][1]*sm[5]-e[5]*w[5]*sj[5]+fe[7][1]*vp[7][1]; tb1=-(we1+we2+we3+we4+we5)/w[1];printf("%2d%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f\n",i+1,t[1]/dr,fr1,bt1/dr,fr3,bt3/dr,tb,tb1);fprintf(fp,"%2d%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f\n",i+1,t[1]/dr,fr1,bt1/dr,fr3,bt3/dr,tb,tb1);tbdraw[i]=tb;tb1draw[i]=tb1;fr1draw[i]=fr1;sita1[i]=bt1;fr2draw[i]=fr3;sita2[i]=bt3;fr3draw[i]=fr3;sita3[i]=bt3;if(i%16==0)getch();}fclose(fp);getch();draw2(del,tbdraw,tb1draw,ic,m);draw3(del,sita1,fr1draw,sita2,fr2draw,sita3,fr3draw,ic,m);}extf(p,vp,ap,t,w,e,nexf,fe)doublep[20][2],vp[20][2],ap[20][2],t[10],w[10],e[10],fe[20][2];intnexf;{ fe[nexf][2]=0.0; if((vp[5][1]>0)&&(p[5][1]>(-0.318))&&(p[5][1]<0.019)) {fe[nexf][1]=-9000.0;} else {fe[nexf][1]=0;}}运行结果:TheKineto-staticAnalysisofaSix-barLinkaseNOTHETA1fr1dita1fr3sita3tbtb1degNradianNradianN.mN.m1194.4781465.96114.478627.211-171.015-0.000-0.0002179.4781127.91214.005446.916179.556-28.293-28.2933164.47815767.37112.7236867.477-148.658-746.184-746.1844149.47815065.89910.8186002.447-154.166-995.161-995.1615134.47814516.5608.4555324.070-162.398-1174.074-1174.0746119.47814074.0695.7694865.571-172.533-1288.627-1288.6277104.47813725.6742.8814635.881176.812-1344.548-1344.548889.47813479.810-0.1044606.793167.177-1347.945-1347.945974.47813355.544-3.0864730.512159.624-1304.217-1304.2171059.47813373.618-5.9644969.198154.494-1216.382-1216.3821144.47813549.209-8.6315310.503151.601-1083.634-1083.6341229.47813886.197-10.9685763.750150.487-900.827-900.8271314.47814373.388-12.8346345.168150.615-659.496-659.49614-0.5221208.101165.934504.9477.11728.29328.29315-15.5221602.230165.525711.386-1.585-2.929-2.92916-30.5221999.234166.143957.246-5.892-57.335-57.33517-45.5222257.789167.9661159.948-6.456-124.576-124.57618-60.5222148.950171.0641170.305-3.036-168.380-168.38019-75.5221409.272175.286812.2497.743-133.095-133.09520-90.5227.272-179.826244.64188.754-0.727-0.72721-105.5221484.3365.037866.590169.198138.980138.98022-120.5222280.1949.1921242.566-177.203175.402175.40223-135.5222270.20212.2031157.293-170.237121.224121.22424-150.5221883.41613.937884.112-167.92650.45950.45925-165.5221465.96114.478627.211-171.015-0.000-0.000平衡力矩线图:固定铰链处反力矢端图:方案b程序:#include"subk.c"#include"subf.c"#include"draw.c"main(){staticdoublep[20][2],vp[20][2],ap[20][2],del;staticdoublet[10],w[10],e[10],tbdraw[370],tb1draw[370];staticdoublesita1[370],fr1draw[370],sita2[370],fr2draw[370],sita3[370],fr3draw[370],fr3,bt3;staticdoublefr[20][2],fe[20][2],fk[20][2],pk[20][2],tb,tb1,fr1,bt1,fr3,bt3,we1,we2,we3,we4,we5;staticintic;doubler12,r34,r58,r57;doublepi,dr;doubler2,vr2,ar2,r3,ar3;inti;FILE*fp;char*m[]={"tb","tb1","fr1","","fr2"};sm[3]=30.0;sm[5]=95.0;sj[3]=0.7;sj[5]=0.0;r12=0.1;r34=0.75;r57=sqrt(0.4*0.4+0.1*0.1);r58=sqrt(0.05*0.05+0.15*0.15);pi=4.0*atan(1.0);dr=pi/180.0;t[6]=0.0;w[6]=0.0;e[6]=0.0;w[1]=-2*pi;e[1]=0.0;del=15.0;p[1][1]=0.0;p[1][2]=0.0;p[3][1]=0.0;p[3][2]=-0.4;p[6][1]=0.0;p[6][2]=0.338;printf("\nTheKineto-staticanalysisofasix-barLinkase\n");printf("NoHETALfr1sita1fr4sita4tbtb1\n");printf("degNradianNradianN.mN.m");if((fp=fopen("file","w"))==NULL){printf("Can'topenthefile.\n");exit(0);}fprintf(fp,"\nTheKineto-staticanalysisofasix-barLinkase\n");fprintf(fp,"degNradianNradianN.mN.m");ic=(int)(360.0/del);for(i=0;i<=ic;i++){t[1]=(double)(270*dr-acos(0.1/0.4)-(i)*del*dr);bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);rprk(1,3,2,3,2,0.0,&r2,&vr2,&ar2,t,w,e,p,vp,ap);bark(3,0,4,3,0.0,r34,0.0,t,w,e,p,vp,ap);rppk(4,6,4,5,4,5,6,0.0,0.0,pi/2,&r2,&vr2,&ar2,&r3,&vr2,&ar3,t,w,e,p,vp,ap);bark(3,0,9,3,0.0,r34/2,0.0,t,w,e,p,vp,ap);bark(5,0,8,5,0.0,r58,-161.57*dr,t,w,e,p,vp,ap);bark(5,0,7,5,0.0,r57,165.96*dr,t,w,e,p,vp,ap);rppf(4,6,4,5,0,8,0,7,7,4,5,6,p,vp,ap,t,w,e,fr,fk,pk);rprf(3,2,9,0,4,0,0,3,2,p,vp,ap,t,w,e,fr,fk,pk);barf(1,0,2,1,p,ap,e,fr,&tb);fr1=sqrt(fr[1][1]*fr[1][1]+fr[1][2]*fr[1][2]);bt1=atan2(fr[1][2],fr[1][1]);fr3=sqrt(fr[3][1]*fr[3][1]+fr[3][2]*fr[3][2]);bt3=atan2(fr[3][2],fr[3][1]);we1=0.0;we2=0.0;we3=-(ap[9][1]*vp[9][1]+(ap[9][2]+9.81)*vp[9][2])*sm[3]-e[3]*w[3]*sj[3];we4=0.0;extf(p,vp,ap,t,w,e,7,fe);we5=-(ap[8][1])*vp[8][1]*sm[5]+fe[7][1]*vp[7][1];tb1=-(we1+we2+we3+we4+we5)/w[1];printf("\n%2d%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f",i+1,t[1]/dr,fr1,bt1/dr,fr3,bt3/dr,tb,tb1);fprintf(fp,"\n%2d%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f%10.3f",i+1,t[1]/dr,fr1,bt1/dr,fr3,bt3/dr,tb,tb1);tbdraw[i]=tb;tb1draw[i]=tb1;fr1draw[i]=fr1;sita1[i]=bt1;fr2draw[i]=fr3;sita2[i]=bt3;fr3draw[i]=fr3;sita3[i]=bt3;if((i%15)==0){getch();}}fclose(fp);getch();draw2(del,tbdraw,tb1draw,ic,m);draw3(del,sita1,fr1draw,sita2,fr2draw,sita3,fr3draw,ic,m);}extf(p,vp,ap,t,w,e,nexf,fe)doublep[20][2],vp[20][2],ap[20][2],t[10],w[10],e[10],fe[20][2];intnexf;{ fe[nexf][2]=0.0; if(vp[nexf][1]>=0) {fe[nexf][1]=0.0; if(p[5][1]>-0.1683&&p[5][1]<0.1683&&vp[5][1]>0) fe[nexf][1]=-9000.0;} else {fe[nexf][1]=0.0;}}运行结果:TheKineto-staticanalysisofasix-barLinkasedegNradianNradianN.mN.m1194.4781519.21214.478659.183-175.054-0.000-0.0002179.4781155.15614.005468.778175.684-28.976-28.9763164.47815911.31912.7236809.444-151.974-752.996-752.9964149.47815074.89310.8185984.792-154.944-995.755-995.7555134.47814449.8428.4555342.350-159.882-1168.678-1168.6786119.47813996.2205.7694878.937-166.659-1281.499-1281.4997104.47813684.5542.8814599.553-174.885-1340.520-1340.520889.47813495.323-0.1044508.459176.170-1349.496-1349.496974.47813417.449-3.0864600.341167.443-1310.262-1310.2621059.47813446.859-5.9644857.974159.785-1223.043-1223.0431144.47813585.300-8.6315257.689153.740-1086.520-1086.5201229.47813839.246-10.9685777.238149.541-897.781-897.7811314.47814218.709-12.8346400.747147.238-652.399-652.39914-0.5221178.226165.934479.6673.48327.59327.59315-15.5221546.948165.525675.075-5.382-2.828-2.82816-30.5221956.302166.143929.111-8.924-56.104-56.10417-45.5222273.380167.9661166.050-7.930-125.437-125.43718-60.5222201.471171.0641201.810-2.589-172.495-172.49519-75.5221402.867175.286816.34610.070-132.490-132.49020-90.52255.3600.174246.91997.5085.5365.53621-105.5221484.5725.037858.293171.324139.002139.00222-120.5222227.0989.1921211.035-176.878171.317171.31723-135.5222259.57212.2031153.302-171.864120.656120.65624-150.5221928.39113.937910.558-171.16851.66451.66425-165.5221519.21214.478659.183-175.054-0.000-0.000平衡力矩线图:固定铰链处反力矢端图:方案a和方案b的运动比较,由运行结果和运动线图知:方案a的最大平衡力矩略大于方案b的最大平衡力矩,但方案a的平均平衡力矩为-481.507略小于方案b的平均平衡力矩-481.508。且方案a和b中固定铰链1受的运动副反力方向相同,但是固定铰链1处方案a中受力不均匀系数为2.315大于方案b的速度不均匀系数为2.29,固定铰链3处方案a和b中受力方向略有不同,方案a中的受力不均匀系数2.468小于方案b的速度不均匀系数2.47。3)飞轮转动惯量:方案a程序:#include"subk.c"#include"subf.c"main(){staticdoublep[20][2],vp[20][2],ap[20][2],del;staticdoublet[10],w[10],e[10],Tr[370];staticdoublefr[20][2],fe[20][2],fk[20][2],pk[20][2];staticintic;inti,j;doubleTd,sum1=0.0,D[370],E[370],Max,Min,Jf,b;doubler12,r34,r45,r58,r57,tb;doublepi,dr;doubler2,vr2,ar2;FILE*fp;E[0]=0.0;Max=E[0];Min=E[0];b=0.03;sm[1]=0.0;sm[2]=0.0;sm[3]=30.0;sm[4]=0.0;sm[5]=95.0;sj[3]=0.7;r12=0.1;r34=0.75;r45=0.15;r58=sqrt(0.05*0.05+0.15*0.15);r57=sqrt(0.10*0.10+0.40*0.40);pi=4.0*atan(1.0);dr=pi/180.0;t[6]=0.0;w[6]=0.0;e[6]=0.0;w[1]=-2*pi;e[1]=0.0;del=15.0;p[3][1]=0.0;p[3][2]=-0.4;p[1][1]=0.0;p[1][2]=0.0;p[6][1]=0.0;p[6][2]=0.338;printf("\nTheKineto-statiaAnalysisofNtbc\n");printf("\nNoTheta1TrE\n");printf("deg.N.M1/s\n");if((fp=fopen("file","w"))==NULL){printf("Can'topenthis");exit(0);}fprintf(fp,"\nTheKineto-statiaAnalysisofNtbc\n");fprintf(fp,"\nNoTheta1TrE\n");fprintf(fp,"deg.N.M1/s\n");ic=(int)(360.0/del);for(i=0;i<=ic;i++){t[1]=(double)(270*dr-acos(0.1/0.4)-(i)*del*dr);bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);rprk(1,3,2,3,2,0.0,&r2,&vr2,&ar2,t,w,e,p,vp,ap);bark(3,0,4,3,0.0,r34,0.0,t,w,e,p,vp,ap);rrpk(-1,4,6,5,4,5,6,r45,&r2,&vr2,&ar2,t,w,e,p,vp,ap);bark(3,0,9,3,0.0,r34/2,0.0,t,w,e,p,vp,ap);bark(5,0,8,5,0.0,r58,-161.56*dr,t,w,e,p,vp,ap);bark(5,0,7,5,0.0,r57,165.96*dr,t,w,e,p,vp,ap);rrpf(4,10,5,0,8,0,7,7,4,5,p,vp,ap,t,w,e,fr);rprf(3,2,9,0,4,0,0,3,2,p,vp,ap,t,w,e,fr,fk,pk);barf(1,0,2,1,p,ap,e,fr,&tb);Tr[i]=tb;D[i]=t[1];}for(j=1;j<=ic;j++)sum1=sum1+Tr[j-1];Td=sum1/ic;for(j=1;j<=ic;j++)E[j]=E[j-1]+del*dr*(Td-0.5*(Tr[j]+Tr[j-1]));for(j=1;j<=ic;j++){if(Max<=E[j])Max=E[j];if(Min>=E[j])Min=E[j];}Jf=(Max-Min)/(w[1]*w[1]*b);for(j=0;j<=ic;j++){printf("\n%3d%13.3f%16.3f%16.3f\n",j+1,D[j]/dr,Tr[j],E[j]);fprintf(fp,"\n%3d%13.3f%16.3f%16.3f\n",j+1,D[j]/dr,Tr[j],E[j]);if(j%10==0)getch();}printf("\nJf=%4.3fTd=%4.3f",Jf,Td);fprintf(fp,"\nJf=%4.3fTd=%4.3f",Jf,Td);fclose(fp);getch();}extf(p,vp,ap,t,w,e,nexf,fe)doublep[20][2],vp[20][2],ap[20][2],t[10],w[10],e[10],fe[20][2];intnexf;{ fe[nexf][2]=0.0; if((vp[5][1]>0)&&(p[5][1]>(-0.318))&&(p[5][1]<0.019)) {fe[nexf][1]=-9000.0;} else {fe[nexf][1]=0;}}运行结果:TheKineto-statiaAnalysisofNtbcNoTheta1TrEdeg.N.M1/s1194.478-0.0000.0002179.478-28.293-127.8733164.478-746.184-158.0714149.478-995.161-61.7075134.478-1174.07490.6696119.478-1288.627281.4597104.478-1344.548494.564889.478-1347.945715.434974.478-1304.217931.0241059.478-1216.3821129.3931144.478-1083.6341298.8871229.478-900.8271427.0761314.478-659.4961499.74514-0.52228.2931450.79215-15.522-2.9291315.89516-30.522-57.3351192.20717-45.522-124.5761084.44318-60.522-168.380991.21419-75.522-133.095899.10020-90.522-0.727785.04021-105.522138.980635.36622-120.522175.402462.63723-135.522121.224292.23224-150.52250.459138.18225-165.522-0.000-0.000Jf=1399.766Td=-502.586方案b程序:#include"subk.c"#include"subf.c"main(){staticdoublep[20][2],vp[20][2],ap[20][2],del;staticdoublet[10],w[10],e[10],Tr[370];staticdoublefr[20][2],fe[20][2],fk[20][2],pk[20][2];staticintic;inti,j;doubleTd,sum1=0.0,D[370],E[370],Max,Min,Jf,b;doubler12,r34,r58,r57,tb;doublepi,dr;doubler2,vr2,ar2,r3,vr3,ar3;FILE*fp;E[0]=0.0;Max=E[0];Min=E[0];b=0.03;sm[1]=0.0;sm[2]=0.0;sm[3]=30.0;sm[4]=0.0;sm[5]=95.0;sj[3]=0.7;r12=0.1;r34=0.75;r58=sqrt(0.05*0.05+0.15*0.15);r57=sqrt(0.10*0.10+0.40*0.40);pi=4.0*atan(1.0);dr=pi/180.0;t[6]=0.0;w[6]=0.0;e[6]=0.0;w[1]=-2*pi;e[1]=0.0;del=15.0;p[3][1]=0.0;p[3][2]=-0.4;p[1][1]=0.0;p[1][2]=0.0;p[6][1]=0.0;p[6][2]=0.338;printf("\nTheKineto-statiaAnalysisofNtbc\n");printf("\nNoTheta1TrE\n");printf("deg.N.M1/s\n");if((fp=fopen("file","w"))==NULL){printf("Can'topenthis");exit(0);}fprintf(fp,"\nTheKineto-statiaAnalysisofNtbc\n");fprintf(fp,"\nNoTheta1TrE\n");fprintf(fp,"deg.N.M1/s\n");ic=(int)(360.0/del);for(i=0;i<=ic;i++){t[1]=(double)(270*dr-acos(0.1/0.4)-(i)*del*dr);bark(1,2,0,1,r12,0.0,0.0,t,w,e,p,vp,ap);rprk(1,3,2,3,2,0.0,&r2,&vr2,&ar2,t,w,e,p,vp,ap);bark(3,0,4,3,0.0,r34,0.0,t,w,e,p,vp,ap);rppk(4,6,4,5,4,5,6,0.0,0.0,pi/2,&r2,&vr2,&ar2,&r3,&vr2,&ar3,t,w,e,p,vp,ap);bark(3,0,9,3,0.0,r34/2,0.0,t,w,e,p,vp,ap);bark(5,0,8,5,0.0,r58,-161.57*dr,t,w,e,p,vp,ap);bark(5,0,7,5,0.0,r57,165.96*dr,t,w,e,p,vp,ap);rppf(4,6,4,5,0,8,0,7,7,4,5,6,p,vp,ap,t,w,e,fr,fk,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论