公共政策的定量分析课件_第1页
公共政策的定量分析课件_第2页
公共政策的定量分析课件_第3页
公共政策的定量分析课件_第4页
公共政策的定量分析课件_第5页
已阅读5页,还剩93页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章公共政策的定量分析第七章公共政策的定量分析1教学目的:通过讲解使同学了解和掌握公共政策定量分析的思想、理念和一定的方法,并能够在决策中运用一些重要的方法。

教学重点:量化分析的模型介绍和方法讲解。

教学难点:使学生掌握一些重要的量化分析方法并能够运用。

定量分析是定性分析的模型,在条件许可时,尽量进行定量分析,以便更好地进行定性分析。本章将分析公共政策预测、规划、决策、效果四种量化分析方法。

教学目的:通过讲解使同学了解和掌握公共政2第一节定量分析中的模型

模型概念:主体为了某种特定的认识目的,依据相似性原则而创造或选择一种系统,用于代表被研究的对象。通常分为实物模型和理论模型。理论模型是理论研究中以科学概念、科学假说和数学形态出现的。它有助于人们运用抽象思维,从整体上和劳动中分析复杂的政策系统。公共政策分析中的模型主要是指数学模型。第一节定量分析中的模型模型概念:主体3一、公共政策分析中的数学模型数学模型概念:是依据研究对象的本质特征和数量关系,经过数学处理和抽象后,借助于数学语言,得到一个反映对象量的关系或运动规律的数学表达式。数学模型在公共政策分析中的运用,是把政策各变量之间及各变量与目标之间的关系,用数学关系式的形式表达出来,从而获得最优解。构建数学模型本身不是目的,是政策分析的工具。一、公共政策分析中的数学模型4二、如何建立数学模型

(一)收集资料,找出政策分析中的主要变量及其基本关系。(二)用数学语言表达它们之间的关系,建立数学模型。(三)求解数学模型。(四)评估数学模型。对所得的数学模型加以解释、评价、验证和可行性分析,并对照实际问题提出对解的修正结果,寻求满意的政策方案实施的现实可能性。二、如何建立数学模型5

第二节预测分析法

预测分析法综述科学的预测是决策科学化的重要前提。所谓政策预测,是指建立在有关政策问题本质评估的基础上、用以阐明社会发展可能性或趋势的政策方法。它主要说明的是现实与未来的因果关系。预测分析分为两种:一种是定性分析,一种是定量分析,本节主要研究定量分析。定量分析要求建立在完整的数据统计之上,并要求被预测的过程,从过去到现在以至将来都是平稳发展的。

第二节预测分析法6一、平均预测法(一)算术平均法算术平均数是部分数据或全部数据之和,除以求和时使用的数据的个数所得之商。设定x1,x2,……

xn为n个拟求算术平均数的数据。根据算术平均数的定义,算术平均数一、平均预测法(一)算术平均法7(二)加权平均数加权平均数应用于这样的条件,当求给定的一组数据的平均数时,常由于每个数据在数据组中的重要性不完全相同,而使得到的平均数不那么可靠。这在政策分析收集资料的过程中是常见的。这就需要一种方法,把每个数据的重要性在计算平均数时同时考虑进去。加权平均首先要把每一个数据的重要性,估计为一个“权数”的数值来代表,然后求每个数据与对应的权数之积的和,再把此和除以各个权数之和,所得平均数为加权平均数。(二)加权平均数8设定x1,x2,……

xn为给定的n个数据,w1,w2,……

wn为已知的对应权数,那么根据加权平均数的定义,可以用如下公式求得

加权平均数的政策学意义,可以通过权数体现诸多政策因素对政策结果不同程度的影响。设定x1,x2,……xn为给定的n个数据,w19

由于所求得的平均数的数据的均匀程度每组通常不同,因而所求得的加权平均数并不能体现数据均匀程度的大小。通常用来表明数据均匀程度的指标是标准差。其计算公式是:

S代表标准差。由标准差的计算公式可以推知:(1)S为大于或等于零的数,即S≥0。(2)当S=0时,x1=x2=xn,此种情况表示改组数据具备完全均匀性质。(3)S值越大,则表示改组数据的均匀程度越差。由于所求得的平均数的数据的均匀程度每组通常不10例题:有一组数据分别为:63,67,79,82,51,58,65,72。求这8个数据的标准差S。例题:有一组数据分别为:63,67,79,82,51,58,11

马尔科夫概率预测法:一个系统在由一种状态转移至另一种状态的过程中,存在着转移概率,而且这种转移概率可以依据其紧接的前一种状态推算出来,即第n次转换得到的结果取决于前一次(第n-1次)的结果。系统的这种由一种状态转移至另一种状态的过程成为马尔科夫过程。二、预测分析法举例——马尔科夫概率预测法马尔科夫概率预测法:一个系统在由一种状态转移至另一种状12

马尔科夫分析理论建立了转移概率矩阵模型的概念,认为系统的现实状态仅仅取决于系统的初始状态和状态的转移概率。当系统的初始状态已知为S0,相邻状态之间后一状态对前一状态的转移概率为P,则其递推关系为:S1=S0·PS2=S1·P=S0·P2

……Sn=Sn-1·P=S0·Pn马尔科夫分析理论建立了转移概率矩阵模型13其中,转移概率P应为常量。若用矩阵关系表示转移概率,即可得到如下转移概率矩阵模型:其中,转移概率P应为常量。若用矩阵关系表示14转移概率矩阵的特点:(1)确定转移概率矩阵中诸因素的根据是近期收到的资料;(2)根据马尔科夫的理论,最近一时期的预测结果决定下一时期的概率,即第二次预测的数值只与第一次预测的数值有关,以此类推,第三次预测值只与第二次预测值有关,……

转移概率矩阵的特点:15

例题:某市1994年无固定工作的劳动力20000人,这些劳动力可能就业的人数16000人,可能失业的人数4000人。假如在本年度的就业劳动力中有80%明年会继续就业,而20%明年会继续失业。而在本年度失业人口中,明年会有70%就业,而30%继续失业,这样的比例关系大致不变,问至2000年,该市无固定工作的劳动力就业情况如何?政府要采取什么对策减少失业人口?例题:16

解:按照题意:(就业占80%,失业占20%)转移概率矩阵为P=就业失业

1995年:S1=S0×P=(0.80.2)

=(0.780.22)解:按照题意:171996年:S2=S1×P=S0×P2=(0.80.2)

=(0.780.22)

=(0.7780.222)1997年:

公共政策的定量分析课件18到2000年:所以,到2000年,就业人口为:20000X0.7777778=15555.556≈15556(人)从预测结果看,该市的失业人口,若按目前情况发展,由1994年的4000人会增加到2000的4444人,呈较慢的上升趋势。

到2000年:19第三节规划分析法

公共政策规划是指研制一个计划、方法和对策,解决某项公共问题的过程。进行政策规划要解决的问题通常是:在资源有限的情况下,力求找到最优的配置方案,从而使这些资源得到充分、合理的利用,力求获得最大的政策效益。第三节规划分析法20一、线性规划分析法线性是指量与量之间的正比关系;在直角坐标系里,这是用一根直线表征的关系。线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。

一、线性规划分析法21线性规划是一种合理利用资源、调配资源的应用数学方法。应用线性规划分析法进行公共政策分析的基本思路是:在满足一定的约束条件的基础上,实现政策目标的最大化,即以最小的资源消耗,实现政策最大化的社会经济效益目标。线性规划是一种合理利用资源、调配资源的应用数22

公共政策的线性规划分析模型的结构由以下三个基本要素组成:一是变量。每个政策问题都对应着一组未知数,这组未知数与政策问题的目标和从事的活动有关,是非负数变量。二是目标函数。这是政策目标的数学描述,建立目标函数的目的是求得政策目标的极值。三是约束条件。这是实现政策目标的客观条件和限制因素,对政策方案及其目标的实现起约束作用。公共政策的线性规划分析模型的结构由以下三个基本23在线性规划中,目标函数是变量的线性函数;约束条件是变量的线性等式或线性不等式,这种以变量的线性函数为特征的一类的最优化问题就是线性规划问题。利用线性规划在所求得的解中,满足各种约束条件的解成为可行解。在多组可行解中,使目标函数打到极大的可行解,称为最优解。在线性规划中,目标函数是变量的线性函数;约束条24为说明线性规划的基本内容,举一个有关时间安排问题和人员安排问题的例子:某工厂的中心调度室,每昼夜24小时都要有调度人员值班。已知每个时段(每4小时为一个时段)所需要的值班人数如图表所示。又知,每一调度室值班人员在任1时段开始上班后,要连续工作8小时(包括轮流吃饭时间)才能满足调度值班工作的要求。为使参加值班的总人数最少,请列出相应的数学模型。为说明线性规划的基本内容,举一个有关时间安排问题和25序号时段每个时段中至少需要值班人员数量每一时段开始上班工作人数12345606—1010—1414—1818—2222—0202—0681210864X1X2X3X4X5X6序号时段每个时段中至少需要值班人员数量每一时段开始上班工作人26

解:设每一时段开始上班工作的人数分别为X1,X2,……X1,根据问题所给的条件和要求,可以列出上述问题的线性规划模型为:满足约束条件

X1+

X2≥12

X2+

X3≥10X3+

X4≥8X4+

X5≥6X5+

X6≥4X1+

X6≥8x1≥0

从而求得目标函数(值班人数)min:Z=X1+

X2+

X3+

X4+

X5+

X6该模型是一个求最小值问题的线性函数。解:设每一时段开始上班工作的人数分别为X1,X27二、目标规划分析法在公共政策分析过程中,经常碰到大量多目标决策的情况,而且这些目标常常都是相互关联的,使政策目标趋向于多元化。把几个目标综合成一个目标,把多目标决策问题简化为单目标决策问题,是目标多元化条件下进行政策分析的常用方法。在目标规划分析中,应对政策的每一目标提出一个完成指标,并把目标划分为若干个等级,同时要求首先考虑一级目标的完成,然后才能考虑二级目标。二、目标规划分析法28

例题应用:某工厂生产A、B两种产品,合用一种原料,但单位产品所需要的数量及所耗费的工时都不相同,所获利润也不相同,有关数据见图标。现共有原料100吨,可使用的工时为120小时。在获得最大利润时,哪种方案更优?单位产品AB可供使用的总量原料(吨)工时(小时)342100120利润(百元)64例题应用:某工厂生产A、B两种产品,合用一种原29解:分别用X1,X2表示两种产品的产量,则可得线性规划模型:Max:z=6x1+4x2得:两种产品的最优产量为:x1=20,x2=20这时,总利润为目标函数的最大值,即Zmax

=6x20+4x20=200(元)解:分别用X1,X2表示两种产品的产量,则可得线性规划模型30

进一步设定限制条件:一级目标:利润达到280元二级目标:(1)原料不超过100吨

(1)工时不超过120小时并且规定:二级目标中的两个目标权重之比为1:1(即认为原料超过1吨与工时超过1小时的经济损失相等),则在下列三个方案中,以方案2为最优。(见图表)

方案编号利润(百元)原料(吨)工时(小时)1290110180228095150327090120进一步设定限制条件:方案编号利润(百元)原料(吨)工31第四节决策分析法

教学目的:通过讲解使同学了解和掌握公共政策决策分析思想和理念,并能够在决策中运用几种重要的决策分析方法。

教学重点:风险性决策分析法和不确定性决策分析方法的讲解。

教学难点:使学生掌握风险决策分析方法和不确定性决策分析方法,并并能够在决策中运用。

第四节决策分析法32公共政策是决策的产物。决策是为解决目前或未来可能发生的公共问题,选择最佳方案的一种过程。按照决策问题所处的条件不同,可以分为确定性决策和不确定性决策两种情况。不确定性决策,根据决策过程中掌握信息资料的不同情况,又可以分为风险情况下的决策和完全不确定性情况下的决策。公共政策是决策的产物。决策是为解决目前或未来33

一、风险性决策分析法所谓风险决策,是指根据即将出现的各种自然状态的概率进行的决策。此时的概率是指对公共政策可能带来的未来状况的可能性的反映。风险性决策的基本特征:(1)具备决策者所期望达到的政策目标;(2)有两种或两种以上的自然状态;(3)根据不同的自然状态,可以排出两种以上政策方案。一、风险性决策分析法34(4)不同政策方案下的损益值是明确的;(5)决策者对未来出现的何种自然状态不能确定,但知道其出现的概率。决策矩阵表:QijNjN1N2……NmSiPjP1P2……PmS1Q11Q12……Q1mS2Q21Q22……Q2m:::::SnQn1Qn2……Qnm(4)不同政策方案下的损益值是明确的;Qij35决策矩阵表

QijNjSiPjP1P2……PmS1Q11Q12……Q1mS2Q21Q22……Q2m:::::SnQn1Qn2……Qnm表中:Nj—可能出现的自然状态;Pj—自然状态出现的概率;Si—决策者在解决问题时可能采取的方案Qij—各方案可能产生的结果,即效用值

决策矩阵表QijN36几种主要的公共政策的风险性分析法:(一)最大期望损益值分析法:根据风险性决策的条件要求各种自然状态下出现的概率是已知的。最大期望损益值分析法在各种自然状态中选择可能性最大(概率最大)的自然状态,然后选择在该自然状态下结果最好的方案(即收益值最大、损失值最小的方案)作为最优决策方案。在具体计算过程中,由于各种政策方案在不同自然状态下的损益情况不同,决策者就必须考虑各种政策结果对政策问题带来的综合影响。最大期望损益值分析法的实质,就是对各政策方案的损益值用不同自然状态下的概率加权求和,得出各方案的收益期望值,然后进行比较,从中选择损益值最大的政策方案。其数学模型是:

几种主要的公共政策的风险性分析法:37

其中,EVi表示Si方案的损益期望值。一般的,公共政策的最大期望值决策分析法的步骤是(1)列出决策损益表;(2)以决策损益表为基础,根据各种自然状态的概率,计算出不同政策方案的期望损益值EVi;(3)从EVi(i=1,2,……n)中选出最大值所对应的政策方案,即得到最优方案。其中,EVi表示Si方案的损益期望值38

(二)效用标准分析法损益期望值代表的是重复事件的可能平均值,并不代表未来事件必然实现的数值。根据数理统计原理,当事件重复出现的次数较多,风险程度较小时,用期望值作为评估政策方案的标准是合理的。但在政府决策过程中,当同一决策只能进行一次,且决策者认为风险程度较大时,往往无法按照损益期望值的大小进行决策。而且,若以货币为单位,则同一货币值,在不同风险情况下,或者即使风险相同,但决策者类型不同的情况下,所产生的效用是不一样的,这就引出了“效用”概念。在经济决策领域,往往用它来衡量货币值的主观价值;在政治决策、科技决策文化决策教育决策、社会决策等领域,往往用它来表示决策者对于同一政策方案的主观感受度。(二)效用标准分析法39一般来说,公共政策的效用值通常在0到1之间取值。它是一个相对的概念,数值的大小完全取决于决策者的感受程度。同一损益值,对一个决策者的效用为1,对另一决策者的效用也许为0。用效用标准进行决策时,首先要作决策者的效用曲线。一般以损益值最为横坐标,以效用值作为纵坐标,根据二者之间的对应关系所描绘的平滑曲线就是效用曲线。一般来说,公共政策的效用值通常在0到1之间取值。它是40

例题:某地区的投资政策有两种方案S1、S2,在两种自然状态下的实现概率及其投资损益值见图表,试求该地区投资政策制定者的效用曲线。QijNjN1N2SiPj0.60.4S18-4S23-1例题:某地区的投资政策有两种方案S1、S2,在两种自然状态41解:首先从图表中找出最大和最小损益值,即8和-4,取效用最大者为1,最小者为0,以横轴x表示损益值,纵轴y表示效用值。联接点a(-4,0)和点f(8,1),得到直线A,即完全按照损益期望标准所作出的决策。它表示对风险采取中立态度的决策者的效用曲线。对于某个特定的决策者(保守型或冒险型)来说,他要根据自己的客观条件和主观态度来与直线上各点的损益值相对应,用以确定他自己的效用值。其基本公式为:解:首先从图表中找出最大和最小损益值,即8和-4,取效用42x=xmax+xmin(1-y)将xmax=8,xmin=-4,代入,得:x=8y+(-4)(1-y)=12y-4

由于上式只是中立型决策者的效用曲线af的拟合,对于不同的决策者来说,还要以此为基础,通过提问的方式求得与此相对应的效用值,步骤如下:(1)取y=0.25,则按照直线所对应的损益期望值为:x0.25=12X0.25-4=-1经过提问,决策者可能认为此机会将不止造成1单位的损失,而会损失2.3单位这样,就确定了b(-2.3,0.25)x=xmax+xmin(1-y)43(2)取y=0.5,则按直线所对应的损益期望值为:x0.5=12X0.5-4=2经过提问,决策者可能认为此机会将不会带来2单位的收益,只能获利0.7单位,则得到点c(0.7,0.5)(3)取y=0.7,则按直线所对应的损益期望值为:x0.7=12X0.7-4=4.4经过提问,决策者可能认为此机会不可能带来4.4单位的收益,只能获利2.9单位,则得到点d(2.9,0.7)(2)取y=0.5,则按直线所对应的损益期望值为:x0.5=44(4)取y=0.9,则按直线所对应的损益期望值为:x0.9=12X0.9-4=6.8经过提问,决策者可能认为此机会带来的收益不会达到6.8,只能达到5个单位,则得到点e(5,0.9)(4)取y=0.9,则按直线所对应的损益期望值为:x0.9=45实际应用:最低工资标准测算方法

一、确定最低工资标准应考虑的因素确定最低工资标准一般考虑城镇居民生活费用支出、职工个人缴纳社会保险费、住房公积金、职工平均工资、失业率、经济发展水平等因素。可用公式表示为:M=f(C、S、A、U、E、a)M最低工资标准;C城镇居民人均生活费用;S职工个人缴纳社会保险费、住房公积金;A职工平均工资;U失业率;E经济发展水平;a调整因素。实际应用:最低工资标准测算方法一、确定最低工资标准应考虑46二、确定最低工资标准的通用方法1.比重法即根据城镇居民家计调查资料,确定一定比例的最低人均收入户为贫困户,统计出贫困户的人均生活费用支出水平,乘以每一就业者的赡养系数,再加上一个调整数。2.恩格尔系数法即根据国家营养学会提供的年度标准食物谱及标准食物摄取量,结合标准食物的市场价格,计算出最低食物支出标准,除以恩格尔系数,得出最低生活费用标准,再乘以每一就业者的赡养系数,再加上一个调整数。以上方法计算出月最低工资标准后,再考虑职工个人缴纳社会保险费、住房公积金、职工平均工资水平、社会救济金和失业保险金标准、就业状况、经济发展水平等进行必要的修正。二、确定最低工资标准的通用方法47

举例:某地区最低收入组人均每月生活费支出为210元,每一就业者赡养系数为1.87,最低食物费用为127元,恩格尔系数为0.604,平均工资为900元。1.按比重法计算得出该地区月最低工资标准为:月最低工资标准=210×1.87+a=393+a(元)(1)2.按恩格尔系数法计算得出该地区月最低工资标准为:月最低工资标准=127÷0.604×1.87+a=393+a(元)(2)公式(1)与(2)中a的调整因素主要考虑当地个人缴纳养老、失业、医疗保险费和住房公积金等费用。另,按照国际上一般月最低工资标准相当于月平均工资的40―60%,则该地区月最低工资标准范围应在360元―540元之间

举例:某地区最低收入组人均每月生活费支出为210元,每一就48小时最低工资标准=〔(月最低工资标准÷20.92÷8)×(1+单位应当缴纳的基本养老保险费、基本医疗保险费比例之和)〕×(1+浮动系数)浮动系数的确定主要考虑非全日制就业劳动者工作稳定性、劳动条件和劳动强度、福利等方面与全日制就业人员之间的差异。小时最低工资标准=〔(月最低工资标准÷20.92÷8)49第七章公共政策的定量分析第七章公共政策的定量分析50教学目的:通过讲解使同学了解和掌握公共政策定量分析的思想、理念和一定的方法,并能够在决策中运用一些重要的方法。

教学重点:量化分析的模型介绍和方法讲解。

教学难点:使学生掌握一些重要的量化分析方法并能够运用。

定量分析是定性分析的模型,在条件许可时,尽量进行定量分析,以便更好地进行定性分析。本章将分析公共政策预测、规划、决策、效果四种量化分析方法。

教学目的:通过讲解使同学了解和掌握公共政51第一节定量分析中的模型

模型概念:主体为了某种特定的认识目的,依据相似性原则而创造或选择一种系统,用于代表被研究的对象。通常分为实物模型和理论模型。理论模型是理论研究中以科学概念、科学假说和数学形态出现的。它有助于人们运用抽象思维,从整体上和劳动中分析复杂的政策系统。公共政策分析中的模型主要是指数学模型。第一节定量分析中的模型模型概念:主体52一、公共政策分析中的数学模型数学模型概念:是依据研究对象的本质特征和数量关系,经过数学处理和抽象后,借助于数学语言,得到一个反映对象量的关系或运动规律的数学表达式。数学模型在公共政策分析中的运用,是把政策各变量之间及各变量与目标之间的关系,用数学关系式的形式表达出来,从而获得最优解。构建数学模型本身不是目的,是政策分析的工具。一、公共政策分析中的数学模型53二、如何建立数学模型

(一)收集资料,找出政策分析中的主要变量及其基本关系。(二)用数学语言表达它们之间的关系,建立数学模型。(三)求解数学模型。(四)评估数学模型。对所得的数学模型加以解释、评价、验证和可行性分析,并对照实际问题提出对解的修正结果,寻求满意的政策方案实施的现实可能性。二、如何建立数学模型54

第二节预测分析法

预测分析法综述科学的预测是决策科学化的重要前提。所谓政策预测,是指建立在有关政策问题本质评估的基础上、用以阐明社会发展可能性或趋势的政策方法。它主要说明的是现实与未来的因果关系。预测分析分为两种:一种是定性分析,一种是定量分析,本节主要研究定量分析。定量分析要求建立在完整的数据统计之上,并要求被预测的过程,从过去到现在以至将来都是平稳发展的。

第二节预测分析法55一、平均预测法(一)算术平均法算术平均数是部分数据或全部数据之和,除以求和时使用的数据的个数所得之商。设定x1,x2,……

xn为n个拟求算术平均数的数据。根据算术平均数的定义,算术平均数一、平均预测法(一)算术平均法56(二)加权平均数加权平均数应用于这样的条件,当求给定的一组数据的平均数时,常由于每个数据在数据组中的重要性不完全相同,而使得到的平均数不那么可靠。这在政策分析收集资料的过程中是常见的。这就需要一种方法,把每个数据的重要性在计算平均数时同时考虑进去。加权平均首先要把每一个数据的重要性,估计为一个“权数”的数值来代表,然后求每个数据与对应的权数之积的和,再把此和除以各个权数之和,所得平均数为加权平均数。(二)加权平均数57设定x1,x2,……

xn为给定的n个数据,w1,w2,……

wn为已知的对应权数,那么根据加权平均数的定义,可以用如下公式求得

加权平均数的政策学意义,可以通过权数体现诸多政策因素对政策结果不同程度的影响。设定x1,x2,……xn为给定的n个数据,w158

由于所求得的平均数的数据的均匀程度每组通常不同,因而所求得的加权平均数并不能体现数据均匀程度的大小。通常用来表明数据均匀程度的指标是标准差。其计算公式是:

S代表标准差。由标准差的计算公式可以推知:(1)S为大于或等于零的数,即S≥0。(2)当S=0时,x1=x2=xn,此种情况表示改组数据具备完全均匀性质。(3)S值越大,则表示改组数据的均匀程度越差。由于所求得的平均数的数据的均匀程度每组通常不59例题:有一组数据分别为:63,67,79,82,51,58,65,72。求这8个数据的标准差S。例题:有一组数据分别为:63,67,79,82,51,58,60

马尔科夫概率预测法:一个系统在由一种状态转移至另一种状态的过程中,存在着转移概率,而且这种转移概率可以依据其紧接的前一种状态推算出来,即第n次转换得到的结果取决于前一次(第n-1次)的结果。系统的这种由一种状态转移至另一种状态的过程成为马尔科夫过程。二、预测分析法举例——马尔科夫概率预测法马尔科夫概率预测法:一个系统在由一种状态转移至另一种状61

马尔科夫分析理论建立了转移概率矩阵模型的概念,认为系统的现实状态仅仅取决于系统的初始状态和状态的转移概率。当系统的初始状态已知为S0,相邻状态之间后一状态对前一状态的转移概率为P,则其递推关系为:S1=S0·PS2=S1·P=S0·P2

……Sn=Sn-1·P=S0·Pn马尔科夫分析理论建立了转移概率矩阵模型62其中,转移概率P应为常量。若用矩阵关系表示转移概率,即可得到如下转移概率矩阵模型:其中,转移概率P应为常量。若用矩阵关系表示63转移概率矩阵的特点:(1)确定转移概率矩阵中诸因素的根据是近期收到的资料;(2)根据马尔科夫的理论,最近一时期的预测结果决定下一时期的概率,即第二次预测的数值只与第一次预测的数值有关,以此类推,第三次预测值只与第二次预测值有关,……

转移概率矩阵的特点:64

例题:某市1994年无固定工作的劳动力20000人,这些劳动力可能就业的人数16000人,可能失业的人数4000人。假如在本年度的就业劳动力中有80%明年会继续就业,而20%明年会继续失业。而在本年度失业人口中,明年会有70%就业,而30%继续失业,这样的比例关系大致不变,问至2000年,该市无固定工作的劳动力就业情况如何?政府要采取什么对策减少失业人口?例题:65

解:按照题意:(就业占80%,失业占20%)转移概率矩阵为P=就业失业

1995年:S1=S0×P=(0.80.2)

=(0.780.22)解:按照题意:661996年:S2=S1×P=S0×P2=(0.80.2)

=(0.780.22)

=(0.7780.222)1997年:

公共政策的定量分析课件67到2000年:所以,到2000年,就业人口为:20000X0.7777778=15555.556≈15556(人)从预测结果看,该市的失业人口,若按目前情况发展,由1994年的4000人会增加到2000的4444人,呈较慢的上升趋势。

到2000年:68第三节规划分析法

公共政策规划是指研制一个计划、方法和对策,解决某项公共问题的过程。进行政策规划要解决的问题通常是:在资源有限的情况下,力求找到最优的配置方案,从而使这些资源得到充分、合理的利用,力求获得最大的政策效益。第三节规划分析法69一、线性规划分析法线性是指量与量之间的正比关系;在直角坐标系里,这是用一根直线表征的关系。线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。

一、线性规划分析法70线性规划是一种合理利用资源、调配资源的应用数学方法。应用线性规划分析法进行公共政策分析的基本思路是:在满足一定的约束条件的基础上,实现政策目标的最大化,即以最小的资源消耗,实现政策最大化的社会经济效益目标。线性规划是一种合理利用资源、调配资源的应用数71

公共政策的线性规划分析模型的结构由以下三个基本要素组成:一是变量。每个政策问题都对应着一组未知数,这组未知数与政策问题的目标和从事的活动有关,是非负数变量。二是目标函数。这是政策目标的数学描述,建立目标函数的目的是求得政策目标的极值。三是约束条件。这是实现政策目标的客观条件和限制因素,对政策方案及其目标的实现起约束作用。公共政策的线性规划分析模型的结构由以下三个基本72在线性规划中,目标函数是变量的线性函数;约束条件是变量的线性等式或线性不等式,这种以变量的线性函数为特征的一类的最优化问题就是线性规划问题。利用线性规划在所求得的解中,满足各种约束条件的解成为可行解。在多组可行解中,使目标函数打到极大的可行解,称为最优解。在线性规划中,目标函数是变量的线性函数;约束条73为说明线性规划的基本内容,举一个有关时间安排问题和人员安排问题的例子:某工厂的中心调度室,每昼夜24小时都要有调度人员值班。已知每个时段(每4小时为一个时段)所需要的值班人数如图表所示。又知,每一调度室值班人员在任1时段开始上班后,要连续工作8小时(包括轮流吃饭时间)才能满足调度值班工作的要求。为使参加值班的总人数最少,请列出相应的数学模型。为说明线性规划的基本内容,举一个有关时间安排问题和74序号时段每个时段中至少需要值班人员数量每一时段开始上班工作人数12345606—1010—1414—1818—2222—0202—0681210864X1X2X3X4X5X6序号时段每个时段中至少需要值班人员数量每一时段开始上班工作人75

解:设每一时段开始上班工作的人数分别为X1,X2,……X1,根据问题所给的条件和要求,可以列出上述问题的线性规划模型为:满足约束条件

X1+

X2≥12

X2+

X3≥10X3+

X4≥8X4+

X5≥6X5+

X6≥4X1+

X6≥8x1≥0

从而求得目标函数(值班人数)min:Z=X1+

X2+

X3+

X4+

X5+

X6该模型是一个求最小值问题的线性函数。解:设每一时段开始上班工作的人数分别为X1,X76二、目标规划分析法在公共政策分析过程中,经常碰到大量多目标决策的情况,而且这些目标常常都是相互关联的,使政策目标趋向于多元化。把几个目标综合成一个目标,把多目标决策问题简化为单目标决策问题,是目标多元化条件下进行政策分析的常用方法。在目标规划分析中,应对政策的每一目标提出一个完成指标,并把目标划分为若干个等级,同时要求首先考虑一级目标的完成,然后才能考虑二级目标。二、目标规划分析法77

例题应用:某工厂生产A、B两种产品,合用一种原料,但单位产品所需要的数量及所耗费的工时都不相同,所获利润也不相同,有关数据见图标。现共有原料100吨,可使用的工时为120小时。在获得最大利润时,哪种方案更优?单位产品AB可供使用的总量原料(吨)工时(小时)342100120利润(百元)64例题应用:某工厂生产A、B两种产品,合用一种原78解:分别用X1,X2表示两种产品的产量,则可得线性规划模型:Max:z=6x1+4x2得:两种产品的最优产量为:x1=20,x2=20这时,总利润为目标函数的最大值,即Zmax

=6x20+4x20=200(元)解:分别用X1,X2表示两种产品的产量,则可得线性规划模型79

进一步设定限制条件:一级目标:利润达到280元二级目标:(1)原料不超过100吨

(1)工时不超过120小时并且规定:二级目标中的两个目标权重之比为1:1(即认为原料超过1吨与工时超过1小时的经济损失相等),则在下列三个方案中,以方案2为最优。(见图表)

方案编号利润(百元)原料(吨)工时(小时)1290110180228095150327090120进一步设定限制条件:方案编号利润(百元)原料(吨)工80第四节决策分析法

教学目的:通过讲解使同学了解和掌握公共政策决策分析思想和理念,并能够在决策中运用几种重要的决策分析方法。

教学重点:风险性决策分析法和不确定性决策分析方法的讲解。

教学难点:使学生掌握风险决策分析方法和不确定性决策分析方法,并并能够在决策中运用。

第四节决策分析法81公共政策是决策的产物。决策是为解决目前或未来可能发生的公共问题,选择最佳方案的一种过程。按照决策问题所处的条件不同,可以分为确定性决策和不确定性决策两种情况。不确定性决策,根据决策过程中掌握信息资料的不同情况,又可以分为风险情况下的决策和完全不确定性情况下的决策。公共政策是决策的产物。决策是为解决目前或未来82

一、风险性决策分析法所谓风险决策,是指根据即将出现的各种自然状态的概率进行的决策。此时的概率是指对公共政策可能带来的未来状况的可能性的反映。风险性决策的基本特征:(1)具备决策者所期望达到的政策目标;(2)有两种或两种以上的自然状态;(3)根据不同的自然状态,可以排出两种以上政策方案。一、风险性决策分析法83(4)不同政策方案下的损益值是明确的;(5)决策者对未来出现的何种自然状态不能确定,但知道其出现的概率。决策矩阵表:QijNjN1N2……NmSiPjP1P2……PmS1Q11Q12……Q1mS2Q21Q22……Q2m:::::SnQn1Qn2……Qnm(4)不同政策方案下的损益值是明确的;Qij84决策矩阵表

QijNjSiPjP1P2……PmS1Q11Q12……Q1mS2Q21Q22……Q2m:::::SnQn1Qn2……Qnm表中:Nj—可能出现的自然状态;Pj—自然状态出现的概率;Si—决策者在解决问题时可能采取的方案Qij—各方案可能产生的结果,即效用值

决策矩阵表QijN85几种主要的公共政策的风险性分析法:(一)最大期望损益值分析法:根据风险性决策的条件要求各种自然状态下出现的概率是已知的。最大期望损益值分析法在各种自然状态中选择可能性最大(概率最大)的自然状态,然后选择在该自然状态下结果最好的方案(即收益值最大、损失值最小的方案)作为最优决策方案。在具体计算过程中,由于各种政策方案在不同自然状态下的损益情况不同,决策者就必须考虑各种政策结果对政策问题带来的综合影响。最大期望损益值分析法的实质,就是对各政策方案的损益值用不同自然状态下的概率加权求和,得出各方案的收益期望值,然后进行比较,从中选择损益值最大的政策方案。其数学模型是:

几种主要的公共政策的风险性分析法:86

其中,EVi表示Si方案的损益期望值。一般的,公共政策的最大期望值决策分析法的步骤是(1)列出决策损益表;(2)以决策损益表为基础,根据各种自然状态的概率,计算出不同政策方案的期望损益值EVi;(3)从EVi(i=1,2,……n)中选出最大值所对应的政策方案,即得到最优方案。其中,EVi表示Si方案的损益期望值87

(二)效用标准分析法损益期望值代表的是重复事件的可能平均值,并不代表未来事件必然实现的数值。根据数理统计原理,当事件重复出现的次数较多,风险程度较小时,用期望值作为评估政策方案的标准是合理的。但在政府决策过程中,当同一决策只能进行一次,且决策者认为风险程度较大时,往往无法按照损益期望值的大小进行决策。而且,若以货币为单位,则同一货币值,在不同风险情况下,或者即使风险相同,但决策者类型不同的情况下,所产生的效用是不一样的,这就引出了“效用”概念。在经济决策领域,往往用它来衡量货币值的主观价值;在政治决策、科技决策文化决策教育决策、社会决策等领域,往往用它来表示决策者对于同一政策方案的主观感受度。(二)效用标准分析法88一般来说,公共政策的效用值通常在0到1之间取值。它是一个相对的概念,数值的大小完全取决于决策者的感受程度。同一损益值,对一个决策者的效用为1,对另一决策者的效用也许为0。用效用标准进行决策时,首先要作决策者的效用曲线。一般以损益值最为横坐标,以效用值作为纵坐标,根据二者之间的对应关系所描绘的平滑曲线就是效用曲线。一般来说,公共政策的效用值通常在0到1之间取值。它是89

例题:某地区的投资政策有两种方案S1、S2,在两种自然状态下的实现概率及其投资损益值见图表,试求该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论