2022年山东省青岛六校联考数学八年级上册期末复习检测试题含解析_第1页
2022年山东省青岛六校联考数学八年级上册期末复习检测试题含解析_第2页
2022年山东省青岛六校联考数学八年级上册期末复习检测试题含解析_第3页
2022年山东省青岛六校联考数学八年级上册期末复习检测试题含解析_第4页
2022年山东省青岛六校联考数学八年级上册期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知中,,,,在所在平面内画一条直线,将分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画()A.0条 B.1条 C.2条 D.3条2.如图,三个正比例函数的图象分别对应表达式:将a,b,c从小到大排列为()①y=ax;②y=bx;③y=cxA.a<b<c B.a<c<b C.b<a<c D.c<b<a3.已知实数x,y,z满足++=,且=11,则x+y+z的值为()A.12 B.14 C. D.94.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边QR在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1,则P1表示的数是()A.-2 B.-2 C.1-2 D.2-15.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B6.要使分式有意义,则x的取值范围是()A. B. C. D.7.若(x2-x+m)(x-8)中不含x的一次项,则m的值为()A.8 B.-8 C.0 D.8或-88.下列图案中,是轴对称图形的是()A. B. C. D.9.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.B.C.D.10.某小组长统计组内1人一天在课堂上的发言次数分别为3,3,0,4,1.关于这组数据,下列说法错误的是()A.众数是3 B.中位数是0 C.平均数3 D.方差是2.8二、填空题(每小题3分,共24分)11.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形.图中,____度.12.已知一个三角形的两边长分别为2和5,第三边的取值范围为______.13.,,点在格点上,作出关于轴对称的,并写出点的坐标为________.14.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为_________.15.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)

12

10

8

合计/kg

小菲购买的数量/kg

2

2

2

6

小琳购买的数量/kg

1

2

3

6

从平均价格看,谁买得比较划算?()A.一样划算B.小菲划算C.小琳划算D.无法比较16.点关于轴对称的点的坐标是__________.17.若分式有意义,则的取值范围是__________.18.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有_________个等腰三角形.三、解答题(共66分)19.(10分)已知:如图,,求证:.20.(6分)(1)问题原型:如图①,在锐角中,于点,在上取点,使,连结.求证:.(2)问题拓展:如图②,在问题原型的条件下,为的中点,连结并延长至点,使,连结.判断线段与的数量关系,并说明理由.21.(6分)糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?22.(8分)(模型建立)(1)如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点.求证:;(模型应用)(2)已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.23.(8分)如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.24.(8分)如图,求出的面积,并画出关于轴对称的,写出关于轴对称的的各点坐标.25.(10分)如图,长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,连结AD,AF,FD.(1)若△ADF的面积是,△ABD的面积是6,求△ABD的周长;(2)设△ADF的面积是S1,四边形DBGF的面积是S2,试比较2S1与S2的大小,并说明理由.26.(10分)在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(1)求证:∠AEB=∠ACF;(3)求证:EF1+BF1=1AC1.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.【详解】已知如图,所做三角形是钝角三角形,作AD⊥BC,根据勾股定理可得:AC2-CD2=AB2-BD2所以设CD=x,则BD=7-x所以52-x2=()2-(7-x)2解得x=4所以CD=4,BD=3,所以,在直角三角形ADC中AD=所以AD=BD=3所以三角形ABD是帅气等腰三角形假如从点C或B作直线,不能作出含有边长为3的等腰三角形故符合条件的直线只有直线AD故选:B【点睛】本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.2、B【分析】根据直线所过象限可得a<0,b>0,c>0,再根据直线陡的情况可判断出b>c,进而得到答案.【详解】根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则a<c<b.故选:B.【点睛】此题主要考查了正比例函数图象,关键是掌握:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.同时注意直线越陡,则|k|越大3、A【分析】把两边加上3,变形可得,两边除以得到,则,从而得到的值.【详解】解:,,即,,而,,.故选:A.【点睛】本题考查了分式的加减法:同分母的分式相加减,分母不变,把分子相加减.经过通分,异分母分式的加减就转化为同分母分式的加减.解决问题的关键是从后面的式子变形出.4、C【分析】首先利用勾股定理计算出QP的长,进而可得出QP1的长度,再由Q点表示的数为1可得答案.【详解】根据题意可得QP==2,∵Q表示的数为1,∴P1表示的数为1-2.故选C.【点睛】此题主要考查了用数轴表示无理数,关键是利用勾股定理求出直角三角形的斜边长.5、A【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【详解】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.6、A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得x-1≠0,解得:x≠1,故选A.7、B【解析】(x2-x+m)(x-8)=由于不含一次项,m+8=0,得m=-8.8、D【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项不符合题意;D、是轴对称图形,本选项符合题意.故选:D.【点睛】本题考查的是轴对称图形的概念,属于基础概念题型,熟知轴对称图形的定义是关键.9、D【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.10、B【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A.3,3,0,4,1众数是3,此选项正确;B.

0,3,3,4,1中位数是3,此选项错误;C.

平均数=(3+3+4+1)÷1=3,此选项正确;D.方差S2=[(3−3)2+(3−3)2+(3−0)2+(3−4)2+(3−1)2]=2.8,此选项正确;故选B【点睛】本题考查了方差,加权平均数,中位数,众数,熟练掌握他们的概念是解决问题的关键二、填空题(每小题3分,共24分)11、36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】,是等腰三角形,度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).12、.【分析】根据三角形三边关系两边之和大于第三边,两边之差小于第三边求解即可.【详解】∵一个三角形的两边长分别为2和5,∴第三边x的范围为:,即:.所以答案为.【点睛】本题主要考查了三角形三边关系,熟练掌握相关概念是解题关键.13、(4,-3).【分析】根据题意,作出,并写出的坐标即可.【详解】解:如图,作出关于轴对称的,的坐标为(4,-3).【点睛】作关于轴对称的,关键是确定三个点的位置.14、1.【解析】试题分析:根据比例求出CD的长度,然后根据角平分线上的点到角的两边的距离相等解答.试题解析:∵BC=10,BD:CD=3:2,∴CD=10×=1,过点D作DE⊥AB于点E,∵AD平分∠BAC,且∠C=90°,∴DE=CD=1,∴点D到线段AB的距离为1.考点:角平分线的性质.15、C【解析】试题分析:根据题意分别求出两人的平均价格,然后进行比较.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,则小琳划算.考点:平均数的计算.16、(2,-1)【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称.理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;17、【分析】根据分式的概念,分式有意义则分母不为零,由此即得答案.【详解】要使有意义,则,故答案为:.【点睛】考查了分式概念,注意分式有意义则分母不能为零,这是解题的关键内容,需要记住.18、1.【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定三、解答题(共66分)19、见解析【分析】利用“角角边”证明△ABE和△DCE全等,根据全等三角形对应边相等可得BE=CE,然后利用等边对等角证明即可.【详解】证明:在△ABE和△DCE中,∴△ABE≌△DCE(AAS),

∴BE=CE,

∴∠EBC=∠ECB.【点睛】本题考查了全等三角形的判定与性质,等边对等角的性质,熟练掌握三角形全等的判定方法是解题的关键.20、(1)证明见解析;(2),证明见解析【分析】(1)通过证明,从而证明,得证.(2)根据为的中点得出,再证明,求得,结合(1)所证,可得.【详解】(1)∵∴∵∴∴∴在△BDE和△ADC中∴∴(2),理由如下∵为的中点∴在△BEF和△CMF中∴∴由(1)得∴【点睛】本题考查了全等三角形的性质以及判定,掌握全等三角形的性质以及判定定理是解题的关键.21、竹签有20根,山楂有104个【分析】设竹签有x根,山楂有y个,根据题意列出方程组,解方程组即可得出答案.【详解】设竹签有x根,山楂有y个,根据题意有解得∴竹签有20根,山楂有104个【点睛】本题主要考查二元一次方程组的应用,能够根据题意列出方程组是解题的关键.22、(1)见解析;(2)y=−7x−21;(3)D(4,−2)或(,).【分析】(1)根据△ABC为等腰直角三角形,AD⊥ED,BE⊥ED,可判定;(2)①过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,根据△CBD≌△BAO,得出BD=AO=3,CD=OB=4,求得C(−4,7),最后运用待定系数法求直线l2的函数表达式;(3)根据△APD是以点D为直角顶点的等腰直角三角形,当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,当点D在矩形AOCB的外部时,设D(x,−2x+6),分别根据△ADE≌△DPF,得出AE=DF,据此列出方程进行求解即可.【详解】解:(1)证明:∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=−3;若x=0,则y=4,∴A(−3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(−4,7),设l2的解析式为y=kx+b,则,解得:,∴l2的解析式为:y=−7x−21;(3)D(4,−2)或(,).理由:当点D是直线y=−2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交BC于F,设D(x,−2x+6),则OE=2x−6,AE=6−(2x−6)=12−2x,DF=EF−DE=8−x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12−2x=8−x,解得x=4,∴−2x+6=−2,∴D(4,−2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,−2x+6),则OE=2x−6,AE=OE−OA=2x−6−6=2x−12,DF=EF−DE=8−x,同理可得:△ADE≌△DPF,则AE=DF,即:2x−12=8−x,解得x=,∴−2x+6=,∴D(,),此时,ED=PF=,AE=BF=,BP=PF−BF=<6,符合题意,综上所述,D点坐标为:(4,−2)或(,)【点睛】本题属于一次函数综合题,主要考查了点的坐标、矩形的性质、待定系数法、等腰直角三角形的性质以及全等三角形等相关知识的综合应用,解决问题的关键是作辅助线构造全等三角形,运用全等三角形的性质进行计算,解题时注意分类思想的运用.23、(1)详见解析;(2)①详见解析;②详见解析.【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD,AE⊥CD∴PC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求.②证明:连接DE,DF.如图3所示∵△ABC,△ADC是等边三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE=∠DEA∵EF⊥AF,∠EAF=45°∴∠FEA=45°∴∠FEA=∠EAF∴FA=FE,∠FAD=∠FED∴△FAD≌△FED(SAS)∴∠AFD=∠EFD∴点D到AF,EF的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.24、;图像见解析;A2(-3,-2),B2(-4,3),C2(-1,1)【分析】求出△ABC三边长,判定为直角三角形,再用面积公式求出面积;从△ABC的各点向y轴引垂线并延长相同单位得到各点的对应点,顺次连接即可得到;再利用关于x轴对称的点的坐标特征可得各点坐标.【详解】解:如图,AC2=13,CB2=13,AB2=26,满足AC2+CB2=AB2,

∴△ABC是直角三角形,

∴△ABC的面积=;所画如下图:关于轴对称的的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【点睛】本题考查了轴对称变换作图,属于基础题,做轴对称图形的关键是找出各点的对应点,然后顺次连接.25、(1)12;(2),见解析【分析】(1)长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,根据图形旋转性质,可得∠DAF=,且AD=AF,已知△ADF的面积是,可得AD=AF=5,,已知△ABD的面积是6,可得,即可求出AB和BD,进而求出△ABD的周长.(2)根据图形旋转的性质将S1和S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论