版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等 B.一条边和一个锐角对应相等C.两条直角边对应相等 D.一条直角边和一条斜边对应相等2.甲种防腐药水含药30%,乙种防腐药水含药75%,现用这两种防腐药水配制含药50%的防腐药水18千克,两种药水各需要多少千克?设甲种药水需要x千克,乙种药水需要y千克,则所列方程组正确的是()A. B.C. D.3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8 B.11 C.13 D.154.不等式组的解集在数轴上表示为A. B. C. D.5.如图,的面积为12,,,的垂直平分线分别交,边于点,,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6 B.8 C.10 D.126.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2 B.1cm2 C.1.5cm2 D.1.25cm27.下列命题是真命题的是()A.如果两个角相等,那么它们是对顶角B.两锐角之和一定是钝角C.如果x2>0,那么x>0D.16的算术平方根是48.如图,在△ABC中,AB=AC,∠B=50°,P是边AB上的一个动点(不与顶点A重合),则∠BPC的度数可能是A.50° B.80° C.100° D.130°9.下列图形中对称轴条数最多的是()A.线段 B.正方形 C.圆 D.等边三角形10.“厉害了,中国华为!”2019年1月7日,华为宣布推出业界最高性能ARM-based处理器—鲲鹏1.据了解,该处理器采用7纳米制造工艺.已知1纳米=0.000000001米,则7纳米用科学记数法表示为()A.米 B.米 C.米 D.米11.如图,中,,,在直线或上取一点,使为等腰三角形,则符合条件的点共有()A.个 B.个 C.个 D.个12.一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A.150° B.180° C.135° D.不能确定二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.14.在研究,,这三个数的倒数时发现:,于是称,,这三个数为一组调和数.如果,(),也是一组调和数,那么的值为____.15.如图,y=k1x+b1与y=k2x+b2交于点A,则方程组的解为______.16.观察表格,结合其内容中所蕴含的规律和相关知识可知b=__________;列举猜想与发现3,4,532=4+55,12,1352=12+137,24,2572=24+25……17,b,c172=b+c17.已知点P(a,b)在一次函数y=2x+1的图像上,则2a-b+1=______18.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.三、解答题(共78分)19.(8分)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.20.(8分)解答下面两题:(1)解方程:(2)化简:21.(8分)先阅读后作答:我们已经知道.根据几何图形的面积可以说明完全平方公式,实际上还有一些等式也是可以用这种公式加以说明.例如勾股定理a2+b2=c2就可以用如图的面积关系来说明.(1)根据图2写出一个等式:;(2)已知等式,请你画出一个相应的几何图形加以说明.22.(10分)如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE的长;(2)求点D的坐标.23.(10分)如图,在中,平分交于点,点是边上一点,连接,若,求证:.24.(10分)某商场第1次用600元购进2B铅笔若干支,第2次用800元又购进该款铅笔,但这次每支的进价是第1次进价的八折,且购进数量比第1次多了100支.(1)求第1次每支2B铅笔的进价;(2)若要求这两次购进的2B铅笔按同一价格全部销售完毕后获利不低于600元,问每支2B铅笔的售价至少是多少元?25.(12分)如图,、分别是等边三角形的边、上的点,且,、交于点.(1)求证:;(2)求的度数.26.如图,在平面直角坐标系中,点,点,直线交轴于点.(1)求直线的表达式和点的坐标;(2)在直线上有一点,使得的面积为4,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、A【解析】根据等量关系:甲种防腐药水+乙种防腐药水=18千克,甲种防腐药+乙种防腐药=18×50%千克,可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】由题意得:.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,根据数量关系找出关于x、y的二元一次方程是解题关键.3、C【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=7,AC=6代入计算即可.【详解】∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+7=1.故选:C.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.4、C【详解】不等式组的解集为:1≤x<3,表示在数轴上:,故选C.【点睛】本题考查了不等式组的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、B【分析】先根据中点的定义求出CD,然后可知的周长=PC+PD+CD,其中CD为定长,从而得出PC+PD最小时,的周长最小,连接AD交EF于点P,根据垂直平分线的性质可得此时PC+PD=PA+PD=AD,根据两点之间线段最短可得AD即为PC+PD的最小值,然后根据三线合一和三角形的面积公式即可求出AD,从而求出结论.【详解】解:∵,点为边的中点∴CD=∵的周长=PC+PD+CD,其中CD为定长∴PC+PD最小时,的周长最小连接AD交EF于点P,如下图所示∵EF垂直平分AC∴PA=PC∴此时PC+PD=PA+PD=AD,根据两点之间线段最短,AD即为PC+PD的最小值∵,点D为BC的中点∴AD⊥BC∴,即解得:AD=6∴此时的周长=PC+PD+CD=AD+CD=1即周长的最小值为1.故选B.【点睛】此题考查的是求三角形周长的最小值、垂直平分线的性质和等腰三角形的性质、掌握两点之间线段最短、垂直平分线的性质和三线合一是解决此题的关键.6、B【分析】依据三角形的面积公式及点D、E、F分别为边BC,AD,CE的中点,推出从而求得△BEF的面积.【详解】解:∵点D、E、F分别为边BC,AD,CE的中点,∵△ABC的面积是4,
∴S△BEF=2.故选:B【点睛】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S=×底×高,得出等底同高的两个三角形的面积相等.7、D【分析】直接利用对顶角的性质、锐角钝角的定义以及实数的相关性质分别判断得出答案.【详解】A.如果两个角相等,这两角不一定是对顶角,故此选项不合题意;B.两锐角之和不一定是钝角,故此选项不合题意;C.如果x2>0,那么x>0或x<0,故此选项不合题意;D.16的算术平方根是4,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关性质是解题关键.8、C【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A,再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.9、C【分析】先根据轴对称图形的定义确定各选项图形的对称轴条数,然后比较即可选出对称轴条数最多的图形.【详解】解:A、线段有2条对称轴;B、正方形有4条对称轴;C、圆有无数条对称轴;D、等边三角形有3条对称轴;故选:C.【点睛】本题考查了轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.10、A【分析】先将7纳米写成0.000000007,然后再将其写成a×10n(1<|a|<10,n为整数)即可解答.【详解】解:∵1纳米米,7纳米=0.000000007米米.故答案为A.【点睛】本题主要考查了科学记数法,将原数写成a×10n(1<|a|<10,n为整数),确定a和n的值成为解答本题的关键.11、B【分析】分别以A为顶点、B为顶点、P为顶点讨论即可.【详解】以点A为圆心,AB为半径作圆,交AC于P1,P2,交BC与P3,此时满足条件的等腰△PAB有3个;以点B为圆心,AB为半径作圆,交AC于P5,交BC与P4,P6,此时满足条件的等腰△PAB有3个;作AB的垂直平分线,交BC于P7,此时满足条件的等腰△PAB有1个;∵,∴∠ABP3=60°,∵AB=AP3,∴△ABP3是等边三角形;同理可证△ABP6,△ABP6是等边三角形,即△ABP3,△ABP6,△ABP7重合,综上可知,满足条件的等腰△PAB有5个.故选B.【点睛】本题考查了等腰三角形的定义,等边三角形的判定,以及分类讨论的数学思想,分类讨论是解答本题的关键.12、A【详解】解:根据对顶角相等,所以∠CME=∠AMN,∠BNF=∠MNA,在三角形AMN中,内角和为180°,所以∠CME+∠BNF=180-30=150°故选:A二、填空题(每题4分,共24分)13、1【分析】试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.【详解】解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是:×DE×BC=×10×3=1,故答案为1.考点:角平分线的性质.14、1【分析】根据题中给出了调和数的规律,可将所在的那组调和数代入题中给出的规律里可列方程求解即可.【详解】由题意得:,解得:,
检验:把代入最简公分母:,
故是原分式方程的解.
故答案为:1.【点睛】本题主要考查了分式方程的应用,重点在于弄懂题意,准确地找出题目中所给的调和数的相等关系,这是列方程的关键.15、【解析】试题解析:∵与交于点∴二元一次方程组的解为故答案为16、1【分析】根据猜想与发现得出规律,即第一个数的平方等于两相邻数的和,故b的值可求.【详解】解:∵32=4+5,52=12+13,72=24+25…,∴172=289=b+c=1+145,∴b=1,故答案为:1.【点睛】此题主要考查了数字类变化规律,解答此题的关键是根据已知条件得出规律,利用规律求出未知数的值.17、1【分析】把点P代入一次函数y=2x+1中即可求解.【详解】点P(a,b)在一次函数y=2x+1的图像上,b=2a+1即2a-b+1=1故答案为:1.【点睛】本题考查了一次函数图象上点的坐标,得出b=2a+1是解题关键.18、5【解析】试题解析:如图,在Rt△OAB中,∵OA=4千米,OB=3千米,∴千米.所以甲、乙两人相距5千米.故答案为5.三、解答题(共78分)19、(1)证明见解析;(2)15,26,37,48,59;(3).【解析】试题分析:(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,由“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.试题解析:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.考点:因式分解的应用;新定义;因式分解;阅读型.20、(1);(2)【分析】(1)去分母把分式方程化为整式方程求解即可,注意要验根;(2)根据分式的混合运算法则计算即可.【详解】去分母,得:移项,合并同类项,得:∴.检验:当时,,∴是原方程的解,∴原方程的解是.(2)原式.【点睛】本题考查了解分式方程和分式的混合运算.掌握分式的混合运算法则是解答本题的关键.21、(1);(2)见解析【分析】(1)根据图2中大正方形的面积的两种算法,写出等式即可;
(2)根据已知等式得出相应的图形即可.【详解】(1)根据图2得:;
故答案为:;(2)等式可以用以下图形面积关系说明:大长方形的面积可以表示为:长宽,大长方形的面积也可以表示为:一个正方形的面积+1个小长方形的面积-2个小长方形的面积,∴.【点睛】本题考查了多项式乘多项式,正确利用图形结合面积求出是解题关键.22、(1)4(2)(0,5)【分析】(1)根据轴对称的性质以及勾股定理即可求出线段C的长;(2)在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.【详解】解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,∴BE=,∴CE=BC﹣BE=4;(2)在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴,∴OD=5,∴.【点睛】本题主要考查勾股定理及轴对称的性质,关键是根据轴对称的性质得到线段的等量关系,然后利用勾股定理求解即可.23、证明见解析【分析】先求出∠BAC的度数,进而得出∠BAD,因为∠BAD=40°=∠ADE,由“内错角相等,两直线平行”即可判断.【详解】证明:在中,,平分,【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.24、(1)第1次每支2B铅笔的进价为1元;(2)每支2B铅笔的售价至少是2元.【分析】(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,根据数量=总价÷单价结合第二次比第一次多购进100支,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第一次购进2B铅笔的数量,用其加100可求出第二次购进数量,设每支2B铅笔的售价为y元,根据利润=单价×数量﹣进价结合总利润不低于600元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设第1次每支2B铅笔的进价为x元,则第2次的进价为0.8x元,依题意,得﹣=100,解得:x=1.经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林大学《检体诊断B》2021-2022学年第一学期期末试卷
- 桥梁建设土石方施工实施方案
- 浙江省台州市2023-2024学年高三上学期期末生物试题 含解析
- 2024-2025学年高中物理第四章机械能和能源第5节验证机械能守恒定律教案3粤教版必修2
- 2024年九年级历史下册第17课第三次科技革命课时练习新人教版
- 2024-2025学年高中数学第二章算法初步2.2.2变量与赋值学案含解析北师大版必修3
- 浙江省杭州市2023-2024学年高二上学期1月期末地理试题 含解析
- 2024年土建工程机械作业合同
- 学前教育机构财务制度现状
- 文采风流:近现代闽籍文人与作家学习通超星期末考试答案章节答案2024年
- 儿童年龄分期及各期特点 (儿童护理课件)
- 新版GMP基础知识培训课件
- 可编程控制器应用实训-形考任务4
- 《住院患者身体约束的护理》团体标准解读
- 场地平整工程质量评估评估报告
- 材料分析方法课件 20 扫描电镜之EBSD
- 六年级上数学试题-圆的周长-练习题-人教版 无答案
- 2020年重症医学科病人呼吸心跳骤停演练方案及脚本
- 物联网信息安全知识考核试题与答案
- 军乐队乐器种类以及人员编制
- 常见皮肤病讲稿
评论
0/150
提交评论