2022年贵州省黔东南市数学八年级第一学期期末考试试题含解析_第1页
2022年贵州省黔东南市数学八年级第一学期期末考试试题含解析_第2页
2022年贵州省黔东南市数学八年级第一学期期末考试试题含解析_第3页
2022年贵州省黔东南市数学八年级第一学期期末考试试题含解析_第4页
2022年贵州省黔东南市数学八年级第一学期期末考试试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.2.如图,,AE与BD交于点C,,则的度数为()A. B. C. D.3.以下轴对称图形中,对称轴条数最少的是()A. B.C. D.4.下列运算正确的是()A.(﹣a3)2=﹣a6 B.2a2+3a2=6a2C.2a2•a3=2a6 D.5.解方程1x-2=A.1=1-x-3x-2 B.C.1=x-1-3x-2 D.6.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数()A.135° B.120° C.105° D.75°7.如图,“士”所在位置的坐标为,“相”所在位置的坐标为,那么“炮”所在位置的坐标为()A. B. C. D.8.若多项式与多项式的积中不含x的一次项,则(

)A. B. C. D.9.在平面直角坐标系中,点到原点的距离是()A.1 B. C.2 D.10.的立方根为()A. B. C. D.11.在中,,则()A. B. C. D.12.如图,等腰三角形的顶角为,底边,则腰长为().A. B. C. D.二、填空题(每题4分,共24分)13.直线y1=k1x+b1(k1>0)与y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴围成的三角形面积为4,那么b1-b2等于________.14.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是_____.15.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是__________.16.计算:____,_____.17.如图所示,垂直平分,交于点D,交于点E,若,则_______.18.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m+n的值为_____.三、解答题(共78分)19.(8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.20.(8分)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.21.(8分)如图,在中,是上的一点,若,,,,求的面积.22.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.23.(10分)如图,点在上,和都是等边三角形.猜想:三条线段之间的关系,并说明理由.24.(10分)解不等式组:,并求出它的最小整数解.25.(12分)如图,射线平分,,求证:.26.如图,在平面直角坐标系中,,,.(1)请画出关于轴对称的;(2)直接写出的面积为;(3)请仅用无刻度的直尺画出的平分线,保留作图痕迹.

参考答案一、选择题(每题4分,共48分)1、C【分析】结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.2、D【分析】直接利用三角形的外角性质得出度数,再利用平行线的性质分析得出答案.【详解】解:,.故选D.【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.3、D【解析】根据轴对称图形的概念对各选项分析判断即可解答.【详解】选项A有四条对称轴;选项B有六条对称轴;选项C有四条对称轴;选项D有二条对称轴.综上所述,对称轴最少的是D选项.故选D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、D【解析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【详解】A、(-a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、(,此选项正确;故选D.【点睛】本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.5、C【解析】本题的最简公分母是(x-2).方程两边都乘最简公分母,可把分式方程转换为整式方程.【详解】解:方程两边都乘(x-2),得1=x-1-3(x-2).故选C.【点睛】本题考查解分式方程中的去分母化为整式方程的过程,关键是找到最简公分母,注意不要漏乘,单独的一个数和字母也必须乘最简公分,还有就是分子分母互为相反数时约分为-1.6、C【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算,得到答案.【详解】由题意得,∠A=60°,∠ABD=90°﹣45°=45°,∴α=45°+60°=105°,故选:C.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7、B【分析】由士和相的坐标推得坐标原点所在的位置,即可得出“炮“所在的位置坐标.【详解】解:根据“士”所在位置的坐标为(−1,−2),“相”所在位置的坐标为(2,−2)可建立如图所示坐标系,∴“炮”所在位置为(−3,1),故选:B.【点睛】本题考查了坐标确定位置的知识,解答本题的关键是要建立合适的坐标系.8、D【分析】根据题意可列式,然后展开之后只要使含x的一次项系数为0即可求解.【详解】解:由题意得:;因为多项式与多项式的积中不含x的一次项,所以,解得;故选D.【点睛】本题主要考查多项式,熟练掌握多项式的概念是解题的关键.9、D【分析】根据:(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点到原点的距离是故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.10、A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵∴的立方根是故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.11、A【解析】根据三角形的内角和为180°,即可解得∠A的度数.【详解】∵三角形的内角和为180°∴∵∴故答案为:A.【点睛】本题考查了三角形内角的度数问题,掌握三角形的内角之和为180°是解题的关键.12、C【解析】过作,∵,.∴,.在中,,,∴,,,∴,∴.故选C.二、填空题(每题4分,共24分)13、1【解析】试题分析:根据解析式求得与坐标轴的交点,从而求得三角形的边长,然后依据三角形的面积公式即可求得.试题解析:如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为1,∴OA×OB+OA×OC=1,∴,解得:b1﹣b2=1.考点:两条直线相交或平行问题.14、(2n﹣1,2n﹣1).【解析】解:∵y=x-1与x轴交于点A1,

∴A1点坐标(1,0),

∵四边形A1B1C1O是正方形,

∴B1坐标(1,1),

∵C1A2∥x轴,

∴A2坐标(2,1),

∵四边形A2B2C2C1是正方形,

∴B2坐标(2,3),

∵C2A3∥x轴,

∴A3坐标(4,3),

∵四边形A3B3C3C2是正方形,

∴B3(4,7),

∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,

∴Bn坐标(2n-1,2n-1).

故答案为(2n-1,2n-1).15、47°【分析】首先过点C作CH∥DE交AB于H,即可得CH∥DE∥FG,然后利用两直线平行,同位角相等与余角的性质,即可求得∠β的度数.【详解】解:如图,过点C作CH∥DE交AB于H根据题意得:∠ACB=90°,DE∥FG,∴CH∥DE∥FG,∴∠BCH=∠α=43°,∴∠HCA=90°-∠BCH=47°,∴∠β=∠HCA=47°.【点睛】本题考查平行线的性质,难度不大,解题的关键是准确作出辅助线,掌握两直线平行,同位角相等定理的应用.16、【分析】根据零指数幂、负整数指数幂的意义可计算,根据积的乘方、以及单项式的除法可计算.【详解】1×=,.故答案为:,【点睛】本题考查了零指数幂、负整数指数幂、积的乘方、以及单项式的除法,熟练掌握运算法则是解答本题的关键.17、40°【分析】根据垂直平分线的性质可得AE=BE,再根据等边对等角可得∠ABE=∠A,利用直角三角形两锐角互余可得∠A的度数即∠ABE的度数.【详解】解:∵垂直平分,∴AE=BE,∠ADE=90°,∴∠ABE=∠A=90°-=40°,故答案为:40°.【点睛】本题考查垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余.理解垂直平分线上的点到线段两端距离相等是解题关键.18、1.【分析】设y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入即可得出答案.【详解】设一次函数解析式为:y=kx+b,将(﹣2,m)、(﹣1,2)、(0,n)代入y=kx+b,得:﹣2k+b=m;﹣k+b=2;b=n;∴m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=1.故答案为:1.【点睛】本题主要考查一次函数的待定系数法,把m+n看作一个整体,进行计算,是解题的关键.三、解答题(共78分)19、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.【点睛】本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.20、证明见解析【分析】(1)根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明.(2)根据平行四边形的性质及(1)的结论可得BMDN,则由有一组对边平行且相等的四边形是平行四边形即可证明.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC.∴∠E=∠F,∠DAB=∠BCD.∴∠EAM=∠FCN.又∵AE=CF∴△AEM≌△CFN(ASA).(2)∵由(1)△AEM≌△CFN∴AM=CN.又∵四边形ABCD是平行四边形∴ABCD∴BMDN.∴四边形BMDN是平行四边形.21、1【分析】先根据,,,利用勾股定理的逆定理求证是直角三角形,再利用勾股定理求出的长,然后利用三角形面积公式即可得出答案.【详解】解:,是直角三角形,,在中,,,.因此的面积为1.故答案为1.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证是直角三角形.22、(1)

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:

平均数(分)

中位数(分)

众数(分)

初中部

85

85

85

高中部

85

80

100

(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,,∴<,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.23、AD=BD+CD.理由见解析【分析】首先证明△ABE≌△CBD,进而得到DC=AE,再由AD=AE+ED利用等量代换AD=BD+CD.【详解】解:BD+CD=AD;

∵△ABC和△BDE都是等边三角形,

∴AB=AC,EB=DB=ED,∠ABC=∠EBD=60°,

∴∠ABC-∠EBC=∠EBD-∠EBC,

即∠ABE=∠CBD,

在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),

∴DC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论