版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣82.关于一次函数的图像,下列说法不正确的是()A.经过第一、三、四象限 B.y随x的增大而减小C.与x轴交于(-2,0) D.与y轴交于(0,-1)3.如图所示,OP平分,,,垂足分别为A、B.下列结论中不一定成立的是().A. B.PO平分C. D.AB垂直平分OP4.已知,为内一定点,上有一点,上有一点,当的周长取最小值时,的度数是A. B. C. D.5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.已知△ABC的一个外角为70°,则△ABC一定是()A.锐角三角形 B.直角三角形C.钝角三角形 D.锐角三角形或钝角三角形7.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点,分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点,若点P的坐标为(m,n),则下列结论正确的是()A.m=2n B.2m=n C.m=n D.m=-n8.如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接,其中有:①;②;③;④,四个结论,则结论一定正确的有()个A.1个 B.2个 C.3个 D.4个9.如果方程无解,那么的值为()A.1 B.2 C.3 D.无解10.下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比是2∶3∶5 B.三条边满足关系C.三条边的比是2∶4∶5 D.三边长为1,2,11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是()
A.1.5 B.2.5 C. D.312.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.关于x的分式方程无解,则m的值为_______.14.要使关于的方程的解是正数,的取值范围是___..15.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=2,[-2.5]=-2.现对82进行如下操作:82[]=9[]=2[]=2,这样对82只需进行2次操作后变为2,类似地,对222只需进行___________次操作后变为2.16.当x=______________时,分式的值是0?17.如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26cm,BC=6cm,则△BCD的周长是__________cm.18.计算:(a-b)(a2+ab+b2)=_______.三、解答题(共78分)19.(8分)如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.20.(8分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF,求证:CE=DF.21.(8分)如图①:线段AD、BC相交于点O,连接AB、CD,我们把这个图形称为“对顶三角形”,由三角形内角和定理可知:∠A+∠B+∠AOB=∠C+∠D+∠COD,而∠AOB=∠COD,我们得到:∠A+∠B=∠C+∠D.(1)如图②,求∠A+∠B+∠C+∠D+∠E的度数;(2)如图③,∠A+∠B+∠C+∠D+∠E+∠F=°;(3)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°;22.(10分)先化简,再求值:23.(10分)阅读材料:若,求的值.解:∵,∴,,∴,,∴.根据你的观察,探究下面的问题:(1)已知,求的值;(2)已知△ABC的三边长,且满足,求c的取值范围;(3)已知,,比较的大小.24.(10分)已知中,.(1)如图1,在中,,连接、,若,求证:(2)如图2,在中,,连接、,若,于点,,,求的长;(3)如图3,在中,,连接,若,求的值.25.(12分)进入冬季,空调再次迎来销售旺季,某商场用元购进一批空调,该空调供不应求,商家又用元购进第二批这种空调,所购数量比第一批购进数量多台,但单价是第一批的倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下台空调未出售,为减少库存回笼资金,商家决定最后的台空调按九折出售,如果两批空调全部售完利润率不低于(不考虑其他因素),那么每台空调的标价至少多少元?26.如图,在中,,,平分,延长至,使,连接.求证:≌
参考答案一、选择题(每题4分,共48分)1、D【分析】直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),根据三角形面积公式即可得出结果.【详解】解:如图,直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),∵△ABC的面积为12,∴OA·(OB+OC)=12,即×3×(b1﹣b2)=12,∴b1﹣b2=8,∴b2﹣b1=﹣8,故选:D.【点睛】本题考查了一次函数的应用,正确理解题意,能够画出简图是解题的关键.2、A【分析】由一次函数的性质可判断.【详解】解:A、一次函数的图象经过第二、三、四象限,故本选项不正确.B、一次函数中的<0,则y随x的增大而减小,故本选项正确.C、一次函数的图象与x轴交于(-2,0),故本选项正确.
D、一次函数的图象与y轴交于(0,-1),故本选项正确.
故选:A.【点睛】本题考查了一次函数的性质,熟练运用一次函数的性质解决问题是本题的关键.3、D【分析】根据角平分线上的点到角的两边距离相等可得出PA=PB,再利用“HL”证明△AOP和△BOP全等,可得出,OA=OB,即可得出答案.【详解】解:∵OP平分,,∴,选项A正确;在△AOP和△BOP中,,∴∴,OA=OB,选项B,C正确;由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,选项D错误.故选:D.【点睛】本题考查的知识点是角平分线的性质以及垂直平分线的性质,熟记性质定理是解此题的关键.4、C【分析】设点关于、对称点分别为、,当点、在上时,周长为,此时周长最小.根据轴对称的性质,可求出的度数.【详解】分别作点关于、的对称点、,连接、、,交、于点、,连接、,此时周长的最小值等于.由轴对称性质可得,,,,,,又,,.故选:.【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.5、D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,1),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+1.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.6、C【分析】利用三角形外角与内角的关系计算即可.【详解】∵△ABC的一个外角为70°,∴与它相邻的内角的度数为110°,∴该三角形一定是钝角三角形,故选:C.【点睛】本题考查三角形内角、外角的关系及三角形的分类,熟练掌握分类标准是解题的关键.7、D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C在∠AOB的平分线上,∴m=-n.故选:D.【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键.8、A【分析】由旋转的性质即可判定①③结论错误,②无法判定,通过等角转换即可判定④正确.【详解】由旋转的性质,得AC=CD,AC≠AD,此结论错误;由题意无法得到,此结论错误;由旋转的性质,得BC=EC,BC≠DE,此结论错误;由旋转的性质,得∠ACB=∠DCE,∵∠ACB=∠ACD+∠DCB,∠DCE=∠ECB+∠DCB,∴∠ACD=∠ECB∵AC=CD,BC=CE∴∠A=∠CDA=(180°-∠ECB),∠EBC=∠CEB=(180°-∠ECB)∴,此结论正确;故选:A.【点睛】此题主要考查旋转的性质,熟练掌握,即可解题.9、A【分析】先把分式方程化为整式方程得到x=3m,由于关于x的分式方程无解,当x=3时,最简公分母x-3=0,将x=3代入方程x=3m,解得m=1.【详解】解:去分母得x=3m,
∵x=3时,最简公分母x-3=0,此时整式方程的解是原方程的增根,
∴当x=3时,原方程无解,此时3=3m,解得m=1,
∴m的值为1.
故选A.【点睛】本题考查了分式方程无解的情况,分式方程无解时,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.由于本题中分式方程化为的整式方程x=3m是一元一次方程,一定有解,故只有一种情况,就是只需考虑分式方程有增根的情形.10、C【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.【详解】A、三个角的比为2:3:5,设最小的角为2x,则2x+3x+5x=180°,x=18°,5x=90°,能组成直角三角形,故不符合题意;B、三条边满足关系a2=c2-b2,能组成直角三角形,故不符合题意;C、三条边的比为2:4:5,22+42≠52,不能组成直角三角形,故正确;D、12+()2=22,能组成直角三角形,故此选项不符合题意;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.11、B【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【详解】解:连接DE,如图所示,
∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,
∴AB==5,
∵AD=AC=3,AF⊥CD,
∴DF=CF,
∴CE=DE,BD=AB-AD=2,
在△ADE和△ACE中,,
∴△ADE≌△ACE(SSS),
∴∠ADE=∠ACE=90°,
∴∠BDE=90°,
设CE=DE=x,则BE=4-x,
在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,
即x2+22=(4-x)2,
解得:x=1.5;
∴CE=1.5;
∴BE=4-1.5=2.5
故选:B.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键.12、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.二、填空题(每题4分,共24分)13、1或6或【分析】方程两边都乘以,把方程化为整式方程,再分两种情况讨论即可得到结论.【详解】解:当时,显然方程无解,又原方程的增根为:当时,当时,综上当或或时,原方程无解.故答案为:1或6或.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.14、且a≠-3.【解析】分析:解分式方程,用含a的式子表示x,由x>0,求出a的范围,排除使分母为0的a的值.详解:,去分母得,(x+1)(x-1)-x(x+2)=a,去括号得,x2-1-x2-2x=a,移项合并同类项得,-2x=a+1,系数化为1得,x=.根据题意得,>0,解得a<-1.当x=1时,-2×1=a+1,解得a=-3;当x=-2时,-2×(-2)=a+1,解得a=3.所以a的取值范围是a<-1且a≠-3.故答案为a<-1且a≠-3.点睛:本题考查了由分式方程的解的情况求字母系数的取值范围,这种问题的一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15、2【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【详解】解:∴对222只需进行2次操作后变为2,故答案为:2.【点睛】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.16、-1【解析】由题意得,解之得.17、1【分析】根据线段垂直平分线性质求出AD=BD,根据△ABC周长求出AC,推出△BCD的周长为BC+CD+BD=BC+AC,代入求出即可.【详解】∵DE垂直平分AB,
∴AD=BD,
∵AB=AC,△ABC的周长为26,BC=6,
∴AB=AC=(26-6)÷2=10,
∴△BCD的周长为BC+CD+BD=BC+CD+AD=BC+AC=6+10=1.故答案为:1.【点睛】本题考查了线段垂直平分线性质和等腰三角形的应用,解此题的关键是求出AC长和得出△BCD的周长为BC+AC,注意:线段垂直平分线上的点到线段两个端点的距离相等.18、a3-b3【分析】根据多项式乘以多项式法则进行计算即可求解.【详解】故答案为:【点睛】本题考查了多项式乘以多项式法则,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【详解】(1)∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.20、见解析【分析】先根据AAS证明△AOC≌△BOD,得到AC=BD,再根据SAS证明△AEC≌△BFD,可证明CE=DF.【详解】证明:∵AC∥DB∴∠A=∠B在△AOC和△BOD中∵∴△AOC≌△BOD(AAS)∴AC=BD在△AEC和△BFD中∵∴△AEC≌△BFD(SAS)∴CE=DF【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.21、(1)180°;(2)360°;(3)540°【分析】(1)连接BC,如图1,可知:∠EBC+∠DCE=∠D+∠E,根据等量代换和三角形内角和即可求解;(2)连接AD,如图2,可知:∠EDA+∠FAD=∠E+∠F,根据等量代换和四边形内角和即可求解;(3)连接CF,如图3,可知:∠DCF+∠EFC=∠E+∠D,根据等量代换和五边形内角和即可求解.【详解】解:(1)连接BC,如图1,可知:∠EBC+∠DCE=∠D+∠E∴∠A+∠ABE+∠ACD+∠D+∠E=∠A+∠ABE+∠ACD+∠EBC+∠DCE=∠A+∠ABE+∠EBC+∠ACD+∠DCE=∠A+∠ABC+∠ACE=180°(2)连接AD,如图2,可知:∠EDA+∠FAD=∠E+∠F∴∠FAB+∠B+∠C+∠CDE+∠E+∠F=∠FAB+∠B+∠C+∠CDE+∠EDA+∠FAD=∠BAD+∠B+∠C+∠CDA四边形内角和:(4-2)×180°=360°,∴∠FAB+∠B+∠C+∠CDE+∠E+∠F=360°故答案为:360°(3)连接CF,如图3,可知:∠DCF+∠EFC=∠E+∠D∴∠A+∠B+∠BCD+∠D+∠E+∠EFG+∠G=∠A+∠B+∠BCD+∠DCF+∠EFC+∠EFG+∠G=∠A+∠B+∠BCF+∠CFG+∠G五边形内角和:(5-2)×180°=540°,∴∠A+∠B+∠BCD+∠D+∠E+∠EFG+∠G=540°,故答案为:540°【点睛】本题考查多边形内角和,解题的关键是根据题中给出的思路,用等量代换将要求的角转化在同一个多边形内,根据多边形的内角和求解即可.22、【分析】根据运算顺序,先计算括号里边的式子,发现两分式的分母不相同,先把分母中的多项式分解因式,然后通分,再利用分式的减法法则,分母不变只把分子相减,然后分式的除法法则计算即可.【详解】解:原式======【点睛】此题考查了分式的混合运算,也考查了公式法、提公因式法分解因式的运用,是一道综合题.解答此题的关键是把分式化到最简.23、(1)xy的值是9;(2)1<c<11;(3)P>Q.【分析】(1)根据x2-2xy+2y2+6y+9=0,先仿照例子得出(x-y)2+(y+3)2=0,求出x、y的值,从而得出结果;
(2)首先根据a2+b2-10a-12b+61=0,先得出(a-5)2+(b-6)2=0,求出a、b的值,然后根据三角形的三条关系,可求出c的取值范围;(3)利用作差法,得出P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0,从而可得出结果.【详解】解:(1)∵x2-2xy+2y2+6y+9=0,∴(x2-2xy+y2)+(y2+6y+9)=0,∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,∴x=-3,y=-3,∴xy=(-3)×(-3)=9,即xy的值是9;(2)∵a2+b2-10a-12b+61=0,∴(a2-10a+25)+(b2-12b+36)=0,∴(a-5)2+(b-6)2=0,∴a-5=0,b-6=0,∴a=5,b=6,根据三角形的三边关系可得,6-5<c<6+5,∴1<c<11;(3)P-Q=x2-6x+y2+4y+14=(x-3)2+(y+2)2+1>0,∴P>Q.【点睛】此题主要考查了因式分解的运用,关键是利用完全平方公式将式子进行配方,然后利用非负数的性质求解,将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24、(1)详见解析;(2);(3).【分析】(1)证∠EAC=∠DAB.利用SAS证△ACE≌△ABD可得;(2)连接BD,证,证△ACE≌△ABD可得,CE=BD=5,利用勾股定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁轻工职业学院《药学综合实验》2023-2024学年第一学期期末试卷
- 昆明冶金高等专科学校《高低压电器及设计》2023-2024学年第一学期期末试卷
- 江苏师范大学科文学院《刑法学总论》2023-2024学年第一学期期末试卷
- 吉林化工学院《UI交互设计》2023-2024学年第一学期期末试卷
- 湖南汽车工程职业学院《先进材料进展》2023-2024学年第一学期期末试卷
- 湖北艺术职业学院《金属塑性变形》2023-2024学年第一学期期末试卷
- 黑龙江农业工程职业学院《水文学》2023-2024学年第一学期期末试卷
- 高考物理总复习《动量和动量守恒》专项测试卷含答案
- 重庆工商大学派斯学院《教育与心理研究方法》2023-2024学年第一学期期末试卷
- 郑州大学《商务礼仪》2023-2024学年第一学期期末试卷
- 上海市浦东新区2023-2024学年一年级上学期期末考试数学试题
- 插图在小学英语口语教学中的运用
- 前列腺增生药物治疗
- 人工智能知识图谱(归纳导图)
- 滴滴补贴方案
- 民宿建筑设计方案
- 干部基本信息审核认定表
- 2023年11月外交学院(中国外交培训学院)2024年度公开招聘24名工作人员笔试历年高频考点-难、易错点荟萃附答案带详解
- 春节行车安全常识普及
- 电机维护保养专题培训课件
- 汽车租赁行业利润分析
评论
0/150
提交评论