Lesson5LCAlign教学讲解课件_第1页
Lesson5LCAlign教学讲解课件_第2页
Lesson5LCAlign教学讲解课件_第3页
Lesson5LCAlign教学讲解课件_第4页
Lesson5LCAlign教学讲解课件_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Lesson5

LiquidCrystalAlignmentWZHENGIEOENSYSUTWLesson5

LiquidCrystalAlignm1SurfaceWettingTheshapeofasmalldropofliquidonthesurfaceofasolidisdeterminedby

gSV–gSL=gLVcosa,wheregSV,gSL,andgLVaresurfacetensioncoefficientsatthesolid-vapour,solid-liquid,andliquid-vapourinterfaceandaisthecontactangle.(gLV~20-40erg·cm-2,gSV~50-70erg·cm-2)Inthecaseofanisotropicliquids,allsurfacetensioncoefficientsdependalsoonorientationoftheprincipalaxesofamesophasewithrespecttothesurface.Threepossiblecases:wetting,cosa>0;nonwetting,cosa<0;completewetting,cosa=1.SurfaceWettingTheshapeofa2SurfaceSpreadingIfgSV>gSL+gLV,theequilibriumshapeofthedropisneverreachedandthedropcoversalargeareaofthesurface.Itisacaseofdropspreading.Thespreadingcoefficient

G=gSV–(gSL+gLV).ForavolatileliquidandG>0,theadsorptionofitsvapouratasolidsurfacechangesallg-coefficientssothatcompletewettingisachieved(G=0,cosa=1).ThethicknessoftheliquidisdeterminedbytheVanderWaalsforces

Fornon-volatileliquidwithG>0,suchacaseisimpossibleandthedropisspreading.TheequilibriumthicknessdependsonthespreadingcoefficientwhereLisHamaker’sconstant,risthedensityoftheliquid,andgisthegravityacceleration.Theequationsaretrueforbothisotropicandnematicphases.SurfaceSpreadingIfgSV>gSL3SurfaceWetting

Lowvaluesofqindicatethattheliquidspreads,orwetswell.Highvaluesindicatepoorwetting.q<90:wetting>90:non-wetting=0:completewettingSurfaceWetting

Lowvaluesof4ContactAngle

AHistoryConsideration

Thevalueofstaticcontactanglesaredependentontherecenthistoryoftheinteraction.AdvancedContactAngle thedropletofliquidhasrecentlyexpandedRecededContactAngle thedropletofliquidhasrecentlycontractedAdvancingRecedingContactAngle

AHistoryConsi5ContactAngle

Hysteresis

Thedifferencebetweenthemaximum(advanced/advancing)andminimum(receded/receding)contactanglevaluesiscalledthecontactanglehysteresis.ContactAngle

Hysteresis

The6MeasurementofCA

Goniometry observationofasessiledropoftestliquidonasolidsubstrateTensiometry measuringtheforcesofinteractionasasolidiscontactedwithatestliquidGoniometry Analysisoftheshapeofadropoftestliquidplacedonasolid.Thebasicelements:alightsource,samplestage,lensandimagecapture.Contactanglecanbeassesseddirectlybymeasuringtheangleformedbetweenthesolidandthetangenttothedropsurface.Advantages canuseagreatvarietyofsolidsubstrates,substrateswithregularcurvature,smallquantitiesofliquid,easytotesthightemperatureliquids.Limitations error,especiallysubjectiveerrorbetweenmultipleusers,difficultyinreproducingadvancedandrecededangles.thevelocityofmotioncannotbecontrolled.lesssuitedtoanalysisoftheeffectsofwettingonchangesincontactangle.MeasurementofCA

Goniometry o7MeasurementofContactAngle

GoniometryThebasicelementsofagoniometerincludealightsource,samplestage,lensandimagecapture.Contactanglecanbeassesseddirectlybymeasuringtheangleformedbetweenthesolidandthetangenttothedropsurface.Goiniometer(CAM200,KSV)MeasurementofContactAngle

G8MeasurementofCA(II)

Tensiometry measurestheforcesthatarepresentwhenasampleofsolidisbroughtintocontactwithatestliquid.Asthesolidispushedintotheliquidtheforcesonthebalancearerecorded.Theforcesonthebalanceare Ftotal=wettingforce+weightofprobe-buoyancythewettingforceisdefinedas: Wettingforce=g

LVPcosqwhereg

LVistheliquidsurfacetension,Pistheperimeteroftheprobeandqisthecontactangle.MeasurementofCA(II)

Tensiom9MeasurementofContactAngle

TensiometryThetensiometricmethodformeasuringcontactanglesmeasurestheforcesthatarepresentwhenasampleofsolidisbroughtintocontactwithatestliquid.Iftheforcesofinteraction,geometryofthesolidandsurfacetensionoftheliquidareknownthecontactanglemaybecalculated.Tensiometer(Sigma70,KSV)MakeameasurementofthesurfacetensionoftheliquidusingeitheraWilhelmyplateorDuNouyring.Thesampleofthesolidtobetestedisthenhungonthebalanceandtared.Theliquidisthenraisedtocontactthesolid.Whenthesolidcontactstheliquidthechangeinforcesisdetected.Asthesolidispushedintotheliquidtheforcesonthebalancearerecorded.TheforcesonthebalanceareFtotal=wettingforce+weightofprobe-buoyancy

thewettingforcewhichisdefinedas:Wettingforce=g

LVPcosqgLVistheliquidsurfacetension,Pistheperimeteroftheprobeandqisthecontactangle.MeasurementofContactAngle

T10MeasurementofCA(II)

Tensiometry

AdvantagesAtanypointontheimmersiongraph,allpointsalongtheperimeterofthesolidatthatdepthcontributetotheforcemeasurementrecorded.Allowtheusertoanalyzecontactanglesproducedfromwettingoveranentirerangeofvelocitiesfromstatictorapidwetting.Nopossibilityofsubjectiveerror.Veryusefulinstudyinghysteresis.Variationsofcontactanglesarevisualized.Analysisoffibers,veryproblematicforgoniometry,ishandledeasilybyyourtensiometer.Limitationstheusermusthaveenoughoftheliquidbeingtestedavailablesothathecanimmerseaportionofhissolidinit.thesolidinquestionmustbeavailableinsampleswhichmeetthefollowingconstraints.MeasurementofCA(II)

Tensiom11UseofCAData

Assessingthewettingcharacteristicsofsolid/liquidinteractionsDirectmeasureofwettingOtherexperimentalparametersmaybederiveddirectlyfromcontactangleandsurfacetensionresults.WorkofAdhesion:theworkrequiredtoseparatetheliquidandsolidphases,orthenegativefreeenergyassociatedwiththeadhesionofthesolidandliquidphases.Usedtoexpressthestrengthoftheinteractionbetweenthetwophases.TheworkofAdhesionisgivenbytheYoung-Dupreequationas: Wa=g(1+cosq)WorkofCohesion:theworkrequiredtoseparatealiquidintotwoparts,itisameasureofthestrengthofmolecularinteractionswithintheliquid.Itisgivenby; Wc=2gUseofCAData

Assessingthew12UseofCAData

WorkofSpreading:thenegativefreeenergyassociatedwithspreadingliquidoversolidsurface.AlsoreferredtoasSpreadingCoefficientitisgivenas: Ws=g(cosq-1)WettingTension:ameasurementofforce/lengthdefinedas:

t=Fw/P=g

LVcosqThisvalue,wettingforcenormalizedforlength,alsorepresentstheproductofthecosineofthecontactangleandthesurfacetension.Itallowsforacharacterizationofthestrengthofthewettinginteractionwithoutseparatemeasurementofsurfacetension.Mosthelpfulinsituations,suchasmulticomponentsystems,wheresurfacetensionatinterfacemaynotequalequilibriumsurfacetension.AlsoreferredtoasAdhesionTensionorWorkofWetting.CharacterizationoftheSolidSurfaceMeasurementsofsurfacetensionyielddatawhichdirectlyreflectthermodynamiccharacteristicsoftheliquidtested.Measurementofcontactanglesyielddatawhichreflectthethermodynamicsofaliquid/solidinteraction.UseofCAData

WorkofSpreadi13UseofCAData

Twobasicapproaches

CriticalSurfaceTension:Usingaseriesofhomologousliquidsofdifferingsurfacetensionsagraphofcosqvsgisproduced.Itwillbefoundthatthedataformalinewhichapproachescosq=1atagivenvalueofg.Thisisthemaximalsurfacetensionofaliquidwhichmaycompletelywetyoursolid.Thisvalue,calledthecriticalsurfacetension,canbeusedtocharacterizeyoursolidsurface.FreeSurfaceEnergy:Anotherwaytocharacterizeasolidsurfaceisbycalculatingfreesurfaceenergy,alsoreferredtoassolidsurfacetension.Theliquidsusedmustbecharacterizedsuchthatthepolaranddispersivecomponentsoftheirsurfacetensionsareknown.TherelevantequationisgivenbyOwensandWendtas:

g

l(1+cosq)/(g

ld)1/2=(g

sp)1/2[(g

lp)1/2/(g

ld)1/2]+(g

sd)1/2whereqisthecontactangle,g

lisliquidsurfacetensionandg

sisthesolidsurfacetension,orfreeenergy.Theadditionofdandpinthesubscriptsrefertothedispersiveandpolarcomponentsofeach.UseofCAData

Twobasicappro14SurfaceTension&SurfaceFreeEnergy

Surfacetensionformforce:Theforce,F,involvedinstretchingafilmis:F=γLγ=surfacetension(constant)Thismeans:γ=F/Li.e.force/unitlengthUnits:N/mormN/m(=dyn/cminc.g.sunits)Surfaceenergy

fromwork:Thework,dW,involvedinincreasingthesurfacebyalengthdxis:dW=dG=γLdx=γdAThismeans:γ=dG/dAi.e.freeenergy/unitareaUnits:J/m2=N/mSurfacetensionandsurfaceenergyareinterchangeabledefinitionswiththesameunitsSurfaceTension&SurfaceFree15ContactAngle

SurfaceTension

Theinterfacialfreeenergiesbetweenthethreephasesglvcosq=g

sv–g

slwhereg

lv,g

svandg

slrefertotheinterfacialenergiesoftheliquid/vapor,solid/vaporandsolid/liquidinterfaces.ContactAngle

SurfaceTension16SurfaceEnergyTheenergy,whichisneededtodeviatetheliquidcrystalmolecules(thedirector)fromthepreferredorientationatthesurface,iscalledanchoringenergy.Theenergyofadhesionofliquidcrystalwiththesolidsurfaceandthesurfaceenergyoftheliquidcrystal-solidinterfaceareoftheorderof20-40erg/cm2;thatis,severalordersofmagnitudehigherthantheanchoringenergyofthedirectorreorientationatthesurface(10-3~1erg/cm2).Theanchoringenergy(bytheRapinipotential):ThemoregeneralexpressionThe“polar”and“azimuthal”anchoringenergies:SurfaceEnergyTheenergy,whic17SurfaceEnergyofSolidSurfaceEnergyofSolid18SurfaceEnergyofSolidSurfaceEnergyofSolid19SurfaceEnergyofSolidSurfaceEnergyofSolid20SurfaceEnergyofSolidSurfaceEnergyofSolid21SurfaceEnergyofSolidSurfaceEnergyofSolid22MeasurementofAnchoringEnergy

I.Field–offTechniqueTheazimuthal(Wf)andpolar(Wq)anchoringenergiescanbedeterminedfromthecorrespondingthicknessrofthedomainwallwhichseparatesregionsofnematicLCwithdifferentdirectororientations,

r

Kiid/WwhereKiiisaneffectiveelasticconstant,Wisthecorrespondingelasticenergy,anddthethicknessofthecell.

Anchoringenergycanalsobecalculatedfromthemeasurementsoftheangulardependenceoftheintensityofthesmallanglelightscatteringbydirectorfluctuations.Thewavevectorqofdirectorfluctuationsdependsonanchoringenergy,Forstronganchoring,Wthelowestenergycurvaturemodehasq=p/d.ForfiniteW,thewavevectorissmaller: qw=p/(d+2b)wherebistheso-calledextrapolationlength,

b=Ki/W,whereKiistheelasticmoduluscorrespondingtogeometryofexperiment.MeasurementofAnchoringEnerg23MeasurementofAnchoringEnergy

II.Field–onTechniqueTheclassicalmethodfordeterminingtheanchoringenergyistheFreedericksztransition.Theorientinginfluenceofthesurfaceresultsinadeformationofthedirectorprofileinapreviouslyhomogeneousorhomeotropicliquidcrystalcell,hinderingitsfreerotationparallelorperpendiculartotheexternalfieldduetothedielectricinteraction.Thevalueofthethresholdfield,theshapeofelectricoropticalliquidcrystalresponseabovethethreshold,andthedynamicsoftheFreedericksztransitionmakeitpossibletodeterminethecorrespondinganchoringenergyW.Inthefirstapproximation,wemayusethesameconsiderationsonthewavevectorsofthedeformationsaswealreadystatedabove.ThecorrespondingratioofthedisturbingfieldHwtothethresholdfieldsH

Hw/H=1–2/wi

.wherethecharacteristicparameterwi>>1isdefinedfrom

wi

=d/bi=d

Wi/Ki

MeasurementofAnchoringEnerg24MeasurementofAnchoringEnergyAnexampleshowntheshapeofthesurfacepotentialW(q)wellforplanar-orientedMMBAmeasuredbytheFreedericksztransitiontechnique.MeasurementofAnchoringEnerg25TheMechanismofLCAlignmentHomogenousandhomeotropicalignmentsaremainlydeterminedbythephysicochemicalinteractionsbetweenliquidcrystalandsurface.Thesurfaceenergiesofhomogeneousandhomeotropicalignmentsareexpressedasfollows;

gLS(//)=gS+gL(//)–Wa(//),

gLS()=gS+gL()–Wa(). wheregLS,gS,gLandWaarethesurfaceenergyofliquidcrystal-solid,solid,liquidcrystalandtheworkofadhesion,respectively.Thealignmentofliquidcrystaloccurstoreducethesurfaceenergy,dependingonthemagnitudebetweengLS(//)andgLS(),orWa(//)andWa().Creagh’stheory:Homeotropicalignmentisinducedonalowenergysurface.Buttheconverseisnottrue.Planeralignmentisusuallyobtainedaslongasthesurfaceismicroscopicallyflatandtheliquidcrystaldoesnotcontainanyamphiphilicimpuritywithinefficiencylowsurfacepolarity.Stableparallelalignmentisobtainedbydecreasingthesurfacepolaritybymeansofacoatingpolymerorasurfacecouplingagent,whosemoleculestendtoadsorbparalleltothesurface.

Inordertoobtainhomogeneousalignment,unidirectionalrubbingisnecessary.ThemechanismofparallelalignmenttotherubbingdirectionisanalysedbyBerremanD.W.Berreman,Phys.Rev.Lett.,28:1683,1972..Heestimatedthedifferenceofelasticenergiesbetweenparallelandperpendicularalignmentstothegroovestobeabout5x105erg/cm3forthefusedquartzsurfacewithdiamondpastes.Butfortheusualcloth-rubbedsurface,thegroovesarenotobservedevenbytheelectronmicroscope.Thereforethemechanismofhomogeneousalignmenttotheusualrubbedsurfacemightnotbegrooves,butisconsideredtobeduetostatisticallyparallelalignmentofsomeimpuritiescoatedontothesurfacebyrubbingorofsurfacemoleculesoftheorientationlayer.TheMechanismofLCAlignmentH26MechanismofLCAlignment(cont.)

Whatisthetruemechanismofliquidcrystalalignment?Onefactoristheeffectofimpurities.Insightintotheireffectisprovidedbythefollowingfact.Wesometimesexperienceadeteriorationofthealignmentinliquidcrystaldisplaycells.Haller,KmetzandIshikawaexplainedthereasonforthisphenomenonastheeffectoftheadhesionofamolecularlayeronthesurface.Itisthoughtthattheadhesionlayerconsistsofanimpurity.Inordertoexaminetheintrinsicorientationofliquidcrystalwithouttheinfluenceofanyimpurity,theimpuritymustbeeliminatedfromtheliquidcrystal. Whydoespureliquidcrystalalwaysalignhomogenouslyonsmoothinorganicmaterials?Okanoshowedbyconsideringexcludedvolumeinteractionthattheelongatednematicmoleculesalwaysfavourtheplanaralignmentonthecellwalls. Theexperimentsusingtheliquidcrystalchromatographyshowedthathomeotropicalignmentiseasilyinducedwhenthepolarityofthesubstrateisstrongandamphiphilicimpuritiesarecontainedinliquidcrystal.Becausetheimpuritiesareadsorbedonthesubstrateandinducehomeotropicalignment.Therefore,theweakpolarityofthesubstrateiseffectiveonthehomogeneousalignment.MechanismofLCAlignment(con27Lesson5

LiquidCrystalAlignmentWZHENGIEOENSYSUTWLesson5

LiquidCrystalAlignm28SurfaceWettingTheshapeofasmalldropofliquidonthesurfaceofasolidisdeterminedby

gSV–gSL=gLVcosa,wheregSV,gSL,andgLVaresurfacetensioncoefficientsatthesolid-vapour,solid-liquid,andliquid-vapourinterfaceandaisthecontactangle.(gLV~20-40erg·cm-2,gSV~50-70erg·cm-2)Inthecaseofanisotropicliquids,allsurfacetensioncoefficientsdependalsoonorientationoftheprincipalaxesofamesophasewithrespecttothesurface.Threepossiblecases:wetting,cosa>0;nonwetting,cosa<0;completewetting,cosa=1.SurfaceWettingTheshapeofa29SurfaceSpreadingIfgSV>gSL+gLV,theequilibriumshapeofthedropisneverreachedandthedropcoversalargeareaofthesurface.Itisacaseofdropspreading.Thespreadingcoefficient

G=gSV–(gSL+gLV).ForavolatileliquidandG>0,theadsorptionofitsvapouratasolidsurfacechangesallg-coefficientssothatcompletewettingisachieved(G=0,cosa=1).ThethicknessoftheliquidisdeterminedbytheVanderWaalsforces

Fornon-volatileliquidwithG>0,suchacaseisimpossibleandthedropisspreading.TheequilibriumthicknessdependsonthespreadingcoefficientwhereLisHamaker’sconstant,risthedensityoftheliquid,andgisthegravityacceleration.Theequationsaretrueforbothisotropicandnematicphases.SurfaceSpreadingIfgSV>gSL30SurfaceWetting

Lowvaluesofqindicatethattheliquidspreads,orwetswell.Highvaluesindicatepoorwetting.q<90:wetting>90:non-wetting=0:completewettingSurfaceWetting

Lowvaluesof31ContactAngle

AHistoryConsideration

Thevalueofstaticcontactanglesaredependentontherecenthistoryoftheinteraction.AdvancedContactAngle thedropletofliquidhasrecentlyexpandedRecededContactAngle thedropletofliquidhasrecentlycontractedAdvancingRecedingContactAngle

AHistoryConsi32ContactAngle

Hysteresis

Thedifferencebetweenthemaximum(advanced/advancing)andminimum(receded/receding)contactanglevaluesiscalledthecontactanglehysteresis.ContactAngle

Hysteresis

The33MeasurementofCA

Goniometry observationofasessiledropoftestliquidonasolidsubstrateTensiometry measuringtheforcesofinteractionasasolidiscontactedwithatestliquidGoniometry Analysisoftheshapeofadropoftestliquidplacedonasolid.Thebasicelements:alightsource,samplestage,lensandimagecapture.Contactanglecanbeassesseddirectlybymeasuringtheangleformedbetweenthesolidandthetangenttothedropsurface.Advantages canuseagreatvarietyofsolidsubstrates,substrateswithregularcurvature,smallquantitiesofliquid,easytotesthightemperatureliquids.Limitations error,especiallysubjectiveerrorbetweenmultipleusers,difficultyinreproducingadvancedandrecededangles.thevelocityofmotioncannotbecontrolled.lesssuitedtoanalysisoftheeffectsofwettingonchangesincontactangle.MeasurementofCA

Goniometry o34MeasurementofContactAngle

GoniometryThebasicelementsofagoniometerincludealightsource,samplestage,lensandimagecapture.Contactanglecanbeassesseddirectlybymeasuringtheangleformedbetweenthesolidandthetangenttothedropsurface.Goiniometer(CAM200,KSV)MeasurementofContactAngle

G35MeasurementofCA(II)

Tensiometry measurestheforcesthatarepresentwhenasampleofsolidisbroughtintocontactwithatestliquid.Asthesolidispushedintotheliquidtheforcesonthebalancearerecorded.Theforcesonthebalanceare Ftotal=wettingforce+weightofprobe-buoyancythewettingforceisdefinedas: Wettingforce=g

LVPcosqwhereg

LVistheliquidsurfacetension,Pistheperimeteroftheprobeandqisthecontactangle.MeasurementofCA(II)

Tensiom36MeasurementofContactAngle

TensiometryThetensiometricmethodformeasuringcontactanglesmeasurestheforcesthatarepresentwhenasampleofsolidisbroughtintocontactwithatestliquid.Iftheforcesofinteraction,geometryofthesolidandsurfacetensionoftheliquidareknownthecontactanglemaybecalculated.Tensiometer(Sigma70,KSV)MakeameasurementofthesurfacetensionoftheliquidusingeitheraWilhelmyplateorDuNouyring.Thesampleofthesolidtobetestedisthenhungonthebalanceandtared.Theliquidisthenraisedtocontactthesolid.Whenthesolidcontactstheliquidthechangeinforcesisdetected.Asthesolidispushedintotheliquidtheforcesonthebalancearerecorded.TheforcesonthebalanceareFtotal=wettingforce+weightofprobe-buoyancy

thewettingforcewhichisdefinedas:Wettingforce=g

LVPcosqgLVistheliquidsurfacetension,Pistheperimeteroftheprobeandqisthecontactangle.MeasurementofContactAngle

T37MeasurementofCA(II)

Tensiometry

AdvantagesAtanypointontheimmersiongraph,allpointsalongtheperimeterofthesolidatthatdepthcontributetotheforcemeasurementrecorded.Allowtheusertoanalyzecontactanglesproducedfromwettingoveranentirerangeofvelocitiesfromstatictorapidwetting.Nopossibilityofsubjectiveerror.Veryusefulinstudyinghysteresis.Variationsofcontactanglesarevisualized.Analysisoffibers,veryproblematicforgoniometry,ishandledeasilybyyourtensiometer.Limitationstheusermusthaveenoughoftheliquidbeingtestedavailablesothathecanimmerseaportionofhissolidinit.thesolidinquestionmustbeavailableinsampleswhichmeetthefollowingconstraints.MeasurementofCA(II)

Tensiom38UseofCAData

Assessingthewettingcharacteristicsofsolid/liquidinteractionsDirectmeasureofwettingOtherexperimentalparametersmaybederiveddirectlyfromcontactangleandsurfacetensionresults.WorkofAdhesion:theworkrequiredtoseparatetheliquidandsolidphases,orthenegativefreeenergyassociatedwiththeadhesionofthesolidandliquidphases.Usedtoexpressthestrengthoftheinteractionbetweenthetwophases.TheworkofAdhesionisgivenbytheYoung-Dupreequationas: Wa=g(1+cosq)WorkofCohesion:theworkrequiredtoseparatealiquidintotwoparts,itisameasureofthestrengthofmolecularinteractionswithintheliquid.Itisgivenby; Wc=2gUseofCAData

Assessingthew39UseofCAData

WorkofSpreading:thenegativefreeenergyassociatedwithspreadingliquidoversolidsurface.AlsoreferredtoasSpreadingCoefficientitisgivenas: Ws=g(cosq-1)WettingTension:ameasurementofforce/lengthdefinedas:

t=Fw/P=g

LVcosqThisvalue,wettingforcenormalizedforlength,alsorepresentstheproductofthecosineofthecontactangleandthesurfacetension.Itallowsforacharacterizationofthestrengthofthewettinginteractionwithoutseparatemeasurementofsurfacetension.Mosthelpfulinsituations,suchasmulticomponentsystems,wheresurfacetensionatinterfacemaynotequalequilibriumsurfacetension.AlsoreferredtoasAdhesionTensionorWorkofWetting.CharacterizationoftheSolidSurfaceMeasurementsofsurfacetensionyielddatawhichdirectlyreflectthermodynamiccharacteristicsoftheliquidtested.Measurementofcontactanglesyielddatawhichreflectthethermodynamicsofaliquid/solidinteraction.UseofCAData

WorkofSpreadi40UseofCAData

Twobasicapproaches

CriticalSurfaceTension:Usingaseriesofhomologousliquidsofdifferingsurfacetensionsagraphofcosqvsgisproduced.Itwillbefoundthatthedataformalinewhichapproachescosq=1atagivenvalueofg.Thisisthemaximalsurfacetensionofaliquidwhichmaycompletelywetyoursolid.Thisvalue,calledthecriticalsurfacetension,canbeusedtocharacterizeyoursolidsurface.FreeSurfaceEnergy:Anotherwaytocharacterizeasolidsurfaceisbycalculatingfreesurfaceenergy,alsoreferredtoassolidsurfacetension.Theliquidsusedmustbecharacterizedsuchthatthepolaranddispersivecomponentsoftheirsurfacetensionsareknown.TherelevantequationisgivenbyOwensandWendtas:

g

l(1+cosq)/(g

ld)1/2=(g

sp)1/2[(g

lp)1/2/(g

ld)1/2]+(g

sd)1/2whereqisthecontactangle,g

lisliquidsurfacetensionandg

sisthesolidsurfacetension,orfreeenergy.Theadditionofdandpinthesubscriptsrefertothedispersiveandpolarcomponentsofeach.UseofCAData

Twobasicappro41SurfaceTension&SurfaceFreeEnergy

Surfacetensionformforce:Theforce,F,involvedinstretchingafilmis:F=γLγ=surfacetension(constant)Thismeans:γ=F/Li.e.force/unitlengthUnits:N/mormN/m(=dyn/cminc.g.sunits)Surfaceenergy

fromwork:Thework,dW,involvedinincreasingthesurfacebyalengthdxis:dW=dG=γLdx=γdAThismeans:γ=dG/dAi.e.freeenergy/unitareaUnits:J/m2=N/mSurfacetensionandsurfaceenergyareinterchangeabledefinitionswiththesameunitsSurfaceTension&SurfaceFree42ContactAngle

SurfaceTension

Theinterfacialfreeenergiesbetweenthethreephasesglvcosq=g

sv–g

slwhereg

lv,g

svandg

slrefertotheinterfacialenergiesoftheliquid/vapor,solid/vaporandsolid/liquidinterfaces.ContactAngle

SurfaceTension43SurfaceEnergyTheenergy,whichisneededtodeviatetheliquidcrystalmolecules(thedirector)fromthepreferredorientationatthesurface,iscalledanchoringenergy.Theenergyofadhesionofliquidcrystalwiththesolidsurfaceandthesurfaceenergyoftheliquidcrystal-solidinterfaceareoftheorderof20-40erg/cm2;thatis,severalordersofmagnitudehigherthantheanchoringenergyofthedirectorreorientationatthesurface(10-3~1erg/cm2).Theanchoringenergy(bytheRapinipotential):ThemoregeneralexpressionThe“polar”and“azimuthal”anchoringenergies:SurfaceEnergyTheenergy,whic44SurfaceEnergyofSolidSurfaceEnergyofSolid45SurfaceEnergyofSolidSurfaceEnergyofSolid46SurfaceEnergyofSolidSurfaceEnergyofSolid47SurfaceEnergyofSolidSurfaceEnergyofSolid48SurfaceEnergyofSolidSurfaceEnergyofSolid49MeasurementofAnchoringEnergy

I.Field–offTechniqueTheazimuthal(Wf)andpolar(Wq)anchoringenergiescanbedeterminedfromthecorrespondingthicknessrofthedomainwallwhichseparatesregionsofnematicLCwithdifferent

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论