![甘肃省酒泉市肃州区2022-2023学年九年级数学第一学期期末统考模拟试题含解析_第1页](http://file4.renrendoc.com/view/36479681af526346a29049382b37ce66/36479681af526346a29049382b37ce661.gif)
![甘肃省酒泉市肃州区2022-2023学年九年级数学第一学期期末统考模拟试题含解析_第2页](http://file4.renrendoc.com/view/36479681af526346a29049382b37ce66/36479681af526346a29049382b37ce662.gif)
![甘肃省酒泉市肃州区2022-2023学年九年级数学第一学期期末统考模拟试题含解析_第3页](http://file4.renrendoc.com/view/36479681af526346a29049382b37ce66/36479681af526346a29049382b37ce663.gif)
![甘肃省酒泉市肃州区2022-2023学年九年级数学第一学期期末统考模拟试题含解析_第4页](http://file4.renrendoc.com/view/36479681af526346a29049382b37ce66/36479681af526346a29049382b37ce664.gif)
![甘肃省酒泉市肃州区2022-2023学年九年级数学第一学期期末统考模拟试题含解析_第5页](http://file4.renrendoc.com/view/36479681af526346a29049382b37ce66/36479681af526346a29049382b37ce665.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法将方程变形为,则的值是()A.4 B.5 C.6 D.72.已知(a≠0,b≠0),下列变形错误的是()A. B.2a=3b C. D.3a=2b3.如图,,,以下结论成立的是()A. B.C. D.以上结论都不对4.某种品牌运动服经过两次降价,每件零售价由520元降为312元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A. B.C. D.5.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1006.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个7.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为()A. B. C. D.8.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=39.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定10.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为()A.1 B.2 C.3 D.9二、填空题(每小题3分,共24分)11.如图,△ABC的外心的坐标是____.12.二次函数的最小值是.13.如图,平行四边形中,,如果,则___________.14.代数式+2的最小值是_____.15.如果二次根式有意义,那么的取值范围是_________.16.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.17.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.18.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.三、解答题(共66分)19.(10分)在平面直角坐标系xOy中,已知抛物线G:y=ax2﹣2ax+4(a≠0).(1)当a=1时,①抛物线G的对称轴为x=;②若在抛物线G上有两点(2,y1),(m,y2),且y2>y1,则m的取值范围是;(2)抛物线G的对称轴与x轴交于点M,点M与点A关于y轴对称,将点M向右平移3个单位得到点B,若抛物线G与线段AB恰有一个公共点,结合图象,求a的取值范围.20.(6分)已知抛物线y=mx2+(3–2m)x+m–2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.21.(6分)二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).22.(8分)在正方形ABCD中,M是BC边上一点,且点M不与B、C重合,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.23.(8分)如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像在第二象限交于点,与轴交于点,点在轴上,满足条件:,且,点的坐标为,。(1)求反比例函数的表达式;(2)直接写出当时,的解集。24.(8分)已知关于的一元二次方程:.(1)求证:对于任意实数,方程都有实数根;(2)当为何值时,方程的两个根互为相反数?请说明理由.25.(10分)如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM⊥x轴于点M,交直线CF于点H,设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH的最大值及此时点P的坐标;(3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标.26.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?
参考答案一、选择题(每小题3分,共30分)1、B【分析】将方程用配方法变形,即可得出m的值.【详解】解:,配方得:,即,则m=5.故选B.【点睛】本题考查了配方法,解题的关键是利用完全平方公式对方程进行变形.2、B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.3、C【分析】根据已知条件结合相似三角形的判定定理逐项分析即可.【详解】解:∵∠AOD=90°,设OA=OB=BC=CD=x∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x,∴,∴∴.故答案为C.【点睛】本题主要考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.4、A【分析】根据题意可得到等量关系:原零售价(1-百分率)(1-百分率)=降价后的售价,然后根据等量关系列出方程即可.【详解】解:由题意得:,故答案选A.【点睛】本题考查一元二次方程与实际问题,解题的关键是找出题目中的等量关系,列出方程.5、A【解析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6、B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.7、C【分析】由矩形的性质得到:设利用勾股定理建立方程求解即可得到答案.【详解】解:矩形,设则,(舍去)故选C.【点睛】本题考查的是矩形的性质,勾股定理,掌握以上知识点是解题的关键.8、A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.9、A【分析】反比例函数在第一象限的一支y随x的增大而减小,只需判断a与2a的大小便可得出答案.【详解】∵a<2a又∵反比例函数在第一象限的一支y随x的增大而减小∴故选:A.【点睛】本题考查比较大小,需要用到反比例函数y与x的增减变化,本题直接读图即可得出.10、C【分析】根据垂径定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.二、填空题(每小题3分,共24分)11、【解析】试题解析:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).12、﹣1.【解析】试题分析:∵=,∵a=1>0,∴x=﹣2时,y有最小值=﹣1.故答案为﹣1.考点:二次函数的最值.13、【分析】由平行四边形的性质可知△AEF∽△CDF,再利用条件可求得相似比,利用面积比等于相似比的平方可求得△CDF的面积.【详解】∵四边形ABCD为平行四边形,∴AB∥CD,∴∠EAF=∠DCF,且∠AFE=∠CFD,∴△AEF∽△CDF,∵AE:EB=1:2∴,∴,∵,∴S△CDF=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.14、1【分析】由二次函数的非负性得a-1≥0,解得a≥1,根据被开方数越小,算术平方根的值越小,可得+1≥1,所以代数式的最小值为1.【详解】解:∵≥0,∴+1≥1,即的最小值是1.故答案为:1.【点睛】本题是一道求二次根式之和的最小值的题目,解答本题的关键是掌握二次根式的性质.15、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:二次根式有意义,则1-x≥0,
解得:x≤1.
故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16、.【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.17、(30+30)【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.【详解】解:过C作CD⊥AB于D点,由题意可得,
∠ACD=30°,∠BCD=45°,AC=1.
在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC•cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,
∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与小岛A的距离是(30+30)海里.
故答案为:(30+30).【点睛】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18、【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:∵反比例函数的图象在所在象限内,y的值随x值的增大而减小,
∴k>1.
故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.三、解答题(共66分)19、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)当a=1时,①根据二次函数一般式对称轴公式,即可求得抛物线G的对称轴;②根据抛物线的对称性求得关于对称轴的对称点为,再利用二次函数图像的增减性即可求得答案;(2)根据平移的性质得出、,由题意根据函数图象分三种情况进行讨论,即可得解.【详解】解:(1)①∵当a=1时,抛物线G:y=ax2﹣2ax+1(a≠0)为:∴抛物线G的对称轴为;②画出函数图象:∵在抛物线G上有两点(2,y1),(m,y2),且y2>y1,,∴①当时,随的增大而增大,此时有;②当时,随的增大而减小,抛物线G上点关于对称轴的对称点为,此时有.∴m的取值范围是或;(2)∵抛物线G:y=ax2﹣2ax+1(a≠0的对称轴为x=1,且对称轴与x轴交于点M∴点M的坐标为(1,0)∵点M与点A关于y轴对称∴点A的坐标为(﹣1,0)∵点M右移3个单位得到点B∴点B的坐标为(1,0)依题意,抛物线G与线段AB恰有一个公共点把点A(﹣1,0)代入y=ax2﹣2ax+1,可得;把点B(1,0)代入y=ax2﹣2ax+1,可得;把点M(1,0)代入y=ax2﹣2ax+1,可得a=1.根据所画图象可知抛物线G与线段AB恰有一个公共点时可得:或.故答案是:(1)①1;②m>2或m<0;(2)或【点睛】本题考查了二次函数图像的性质、二次函数图象上的点的坐标特征以及坐标平移,解决本题的关键是综合利用二次函数图象的性质.20、(1)m<且m≠0;(2)点P(1,1)在抛物线上;(3)抛物线的顶点Q的坐标为(–,–).【分析】(1)与x轴有两个不同的交点即令y=0,得到的一元二次方程的判别式△>0,据此即可得到不等式求解;(2)把点(1,1)代入函数解析式判断是否成立即可;(3)首先求得函数解析式,化为顶点式,可求得顶点坐标.【详解】(1)由题意得,(3–2m)2–4m(m–2)>0,m≠0,解得,m<且m≠0;(2)当x=1时,mx2+(3–2m)x+m–2=m+(3–2m)+m–2=1,∴点P(1,1)在抛物线上;(3)当m=1时,函数解析式为:y=x2+x–1=(x+)2–,∴抛物线的顶点Q的坐标为(–,–).【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,则二次函数与x轴有一个交点;如果△<0,则二次函数与x轴无交点.21、(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【分析】根据表格中数据,可得抛物线与x轴交点坐标,与y轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.22、(1)详见解析;(1)①详见解析;②BP=AB.【分析】(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP绕点A顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴23、(1);(2)【解析】(1)过点B作BH⊥x轴于点H,证明≌得到BH与CH的长度,便可求得B点的坐标,进而求得反比例函数解析式;(2)观察函数图象,当一次函数图象在反比例函数图象下方时的自变量x的取值范围便是结果.【详解】解:(1)如图作轴于点则∴∵点的坐标为∴∵∴,在和中有∴≌∴,∴,即∴∴反比例函数解析式为(2)因为在第二象限中,点右侧一次函数的图像在反比例函数图像的下方,所以当时,的解集为.【点睛】本题考查了反比例函数和一次函数的交点问题,熟练掌握函数解析式的求法以及利用数形结合根据函数图象的上下位置关系得出不等式的解集是重点.24、(1)见解析;(2)1,理由见解析.【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=(t﹣3)2≥0,由此可证出:对于任意实数t,方程都有实数根;(2)设方程的两根分别为m、n,由方程的两根为相反数结合根与系数的关系,即可得出m+n=t﹣1=0,解之即可得出结论.试题解析:(1)证明:在方程x2﹣(t﹣1)x+t﹣2=0中,△=[﹣(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t﹣1=0,解得:t=1.∴当t=1时,方程的两个根互为相反数.考点:根与系数的关系;根的判别式.25、(1)y=(x﹣2)2,即y=x2﹣x+1;(2)m=0时,PH的值最大最大值为2,P(0,2);(3)△PCF的巧点有3个,△PCF的周长最小时,“巧点”的坐标为(0,1).【解析】(1)设抛物线的解析式为y=a(x﹣2)2,将点B的坐标代入求得a的值即可;(2)求出直线CF的解析式,求出点P、H的坐标,构建二次函数即可解决问题;(3)据三角形的面积公式求得点P到CF的距离,过点C作CG⊥CF,取CG=.则点G的坐标为(﹣1,2)或(1,4),过点G作GH∥FC,设GH的解析式为y=﹣x+b,将点G的坐标代入求得直线GH的解析式,将直线GH的解析式与抛物线的解析式,联立可得到点P的坐标,当PC+PF最小时,△PCF的周长最小,由PF﹣PM=1可得到PC+PF=PC+PM+1,故此当C、P、M在一条直线上时,△PCF的周长最小,然后可求得此时点P的坐标;【详解】解:(1)设抛物线的解析式为y=a(x﹣2)2,将点B的坐标代入得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度工业气体行业应用解决方案合同范本
- 2025年度教师派遣服务与教育咨询服务合同
- 2025年度模具行业产业链整合合同
- 2025年度光伏电站设备进出口代理合同
- 2025年度建筑工程项目居间劳务合同实施细则
- 2025年度书包机货物配送与仓储管理合同
- 2025年度教师安全责任保险购买合同
- 2025年度含担保人项目融资合同范本
- 2025年度城市基础设施安全检测合同模板
- 2025年度企业高峰论坛讲座赞助合同
- JT-T-496-2018公路地下通信管道高密度聚乙烯硅芯塑料管
- 贵州省铜仁市2024年中考英语模拟试卷(含答案)
- DB43-T 2939-2024 酱腌菜咸胚中亚硝酸盐的测定顶空-气相色谱法
- 食材配送投标方案技术标
- 《电力系统自动化运维综合实》课件-通信设备接地线接头制作
- 再见深海合唱简谱【珠海童年树合唱团】
- 高中物理 选修1 第四章 光(折射反射干涉衍射偏振)(2024人教版)
- 计算机安全弱口令风险
- 舜宇集团2024测试题
- 《聚焦客户创造价值》课件
- 公安校园安全工作培训课件
评论
0/150
提交评论