




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——高一数学第一章知识点进入到高一阶段,大家的学习压力都是呈直线上升的,因此平日的积累也显得尤为重要,我高一频道为大家整理了《新人教版(高一数学)必修一第一章学识点》梦想大家能谨记呦!!
高一数学第一章学识点
一.学识归纳:
1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素
留神:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,那么a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:只要符合条件的对象都是它的元素;只要是它的元素就务必符号条件
2)集合的表示(方法):常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N
2.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,那么AB(或AB);
2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)补集:CUA={x|xA但x∈U}
留神:①?A,若A≠?,那么?A;
②若,,那么;
③若且,那么A=B(等集)
3.弄清集合与元素、集合与集合的关系,掌管有关的术语和符号,更加要留神以下的符号:(1)与、?的识别;(2)与的识别;(3)与的识别。
4.有关子集的几个等价关系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集运算的性质
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,那么A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},那么M,N,P得志关系
A)M=NPB)MN=PC)MNPD)NPM
分析一:从判断元素的共性与识别入手。
解答一:对于集合M:{x|x=,m∈Z};对于集合N:{x|x=,n∈Z}
对于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,应选B。
分析二:简朴列举集合中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以选B。
点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。
变式:设集合,,那么(B)
A.M=NB.MNC.NMD.
解:
当时,2k+1是奇数,k+2是整数,选B
定义集合AB={x|x∈A且xB},若A={1,3,5,7},B={2,3,5},那么AB的子集个数为
A)1B)2C)3D)4
分析:确定集合AB子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。
解答:∵AB={x|x∈A且xB},∴AB={1,7},有两个元素,故AB的子集共有22个。选D。
变式1:已知非空集合M{1,2,3,4,5},且若a∈M,那么6?a∈M,那么集合M的个数为
A)5个B)6个C)7个D)8个
变式2:已知{a,b}A{a,b,c,d,e},求集合A.
解:由已知,集合中务必含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
评析此题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有个.
已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={x|x2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的两根为-2和1,
∴∴
变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={x|x2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
已知集合A={x|(x-1)(x+1)(x+2)0},集合B得志:A∪B={x|x-2},且A∩B={x|1
分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。
解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。
综合以上各式有B={x|-1≤x≤5}
变式1:若A={x|x3+2x2-8x0},B={x|x2+ax+b≤0},已知A∪B={x|x-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
点评:在解有关不等式解集一类集合问题,应留神用数形结合的方法,作出数轴来解之。
变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求全体得志条件的a的集合。
解答:M={-1,3},∵M∩N=N,∴NM
①当时,ax-1=0无解,∴a=0②
综①②得:所求集合为{-1,0,}
已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。
分析:先将原问题转化为不等式ax2-2x+20在有解,再利用参数分开求解。
解答:(1)若,在内有有解
令当时,
所以a-4,所以a的取值范围是
变式:若关于x的方程有实根,求实数a的取值范围。
解答:
点评:解决含参数问题的题目,一般要举行分类议论,但并不是全体的问题都要议论,怎样可以制止议论是我们斟酌此类问题的关键。
一、选择题(每题4分,共40分)
1、以下四组对象,能构成集合的是()
A某班全体高个子的学生B的艺术家
C一切很大的书D倒数等于它自身的实数
2、集合{a,b,c}的真子集共有个()
A7B8C9D10
3、若{1,2}A{1,2,3,4,5}那么得志条件的集合A的个数是()
A.6B.7C.8D.9
4、若U={1,2,3,4},M={1,2},N={2,3},那么CU(M∪N)=()
A.{1,2,3}B.{2}C.{1,3,4}D.{4}
5、方程组的解集是()
A.{x=0,y=1}B.{0,1}C.{(0,1)}D.{(x,y)|x=0或y=1}
6、以下六个关系式:,,,,,是空集中,错误的个数是()
A4B3C2D1
7、点的集合M={(x,y)|xy≥0}是指()
A.第一象限内的点集B.第三象限内的点集
C.第一、第三象限内的点集D.不在其次、第四象限内的点集
8、设集合A=,B=,若AB,那么的取值范围是()
ABCD
9、得志条件M=的集合M的个数是()
A1B2C3D4
10、集合,,,且,那么有()
AB
CD不属于P、Q、R中的任意一个
二、填空题(每题3分,共18分)
11、若,,用列举法表示B
12、集合A={x|x2+x-6=0},B={x|ax+1=0},若BA,那么a=__________
13、设全集U=,A=,CA=,那么=,=。
14、集合,,____________.
15、已知集合A={x|},若A∩R=,那么实数m的取值范围是
16、50名学生做的物理、化学两种测验,已知物理测验做得正确得有40人,化学测验做得正确得有31人,两种测验都做错得有4人,那么这两种测验都做对的有人.
三、解答题(每题10分,共40分)
17、已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
18、已知二次函数()=,A=,试求的解析式
19、已知集合,B=,若,且求实数a,b的值。
20、设,集合,,且A=B,求实数x,y的值
高一数学第一章学识点
本节主要包括函数的模型、函数的应用等学识点。主要是理解函数解应用题的一般步骤生动利用函数解答实际应用题。
1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。
2、用函数解应用题的根本步骤是:(1)阅读并且理解题意.(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回复实际问题。
常见考法:
本节学识在段考和高考中测验的形式多样,频率较高,选择题、填空题和解答题都有。多测验分段函数和较繁杂的函数的最值等问题,属于拔高题,难度较大。
误区指点:
1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
例1:
(1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).
(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.假设存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数.y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元.
例2:
某民营企业生产A,B两种产品,根据(市场调查)和预料,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样调配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。
高一数学第一章学识点
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不可怜况如下:假设a为任意实数,那么函数的定义域为大于0的全体实数;假设a为负数,那么x断定不能为0,不过这时函数的定义域还务必根[据q的奇偶性来确定,即假设同时q为偶数,那么x不能小于0,这时函数的定义域为大于0的全体实数;假设同时q为奇数,那么函数的定义域为不等于0的全体实数。当x为不同的数值时,幂函数的值域的不可怜况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,那么只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种处境来议论各自的特性:
首先我们知道假设a=p/q,q和p都是整数,那么x^(p/q)=q次根号(x的p次方),假设q是奇数,函数的定义域是r,假设q是偶数,函数的定义域是[0,+∞),
当指数n是负整数时,设a=-k,那么x=1/(x^k),鲜明x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
摈弃了为0与负数两种可能,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省大同市第一中学2026届毕业升学考试模拟卷物理卷含解析
- 北京市教育院附中重点达标名校2026届十校联考最后物理试题含解析
- 北京市西城区北京师范大第二附属中学2026届中考数学猜题卷含解析2
- 公司与公司间借款合同范本2025年
- 供电合同协议书范本(2025版)
- 一年级数学(上)计算题专项练习集锦
- 二零二五年度电脑系统自动化部署与安装服务合同
- 2025年度绿色生态园区广告设计执行合同
- 二零二五年度高端酒店餐饮服务管理合同范本
- 二零二五年度艺术品鉴定评估师劳动合同参考
- DB34T 3663-2020 植保无人飞机农田施药作业技术规范
- 2025年全国计算机二级考试模拟考试题库及答案(共290题)
- 2024-2030年中国螺旋藻市场投资效益及运行趋势预测分析报告
- 自建房水电安装承包合同协议书
- 19S406建筑排水管道安装-塑料管道
- (正式版)HGT 3706-2024 工业用金属孔网管骨架聚乙烯复合管
- 中风病饮食指南
- 酒吧投资计划书
- 2023年上海市中考化学试卷真题(含答案与解析)
- 车险续保率分析报告
- 钢结构施工技术指导手册
评论
0/150
提交评论