![2022年北京市海淀区第四中学数学八年级第一学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view/9f811093e25208812a95f36ae8892e33/9f811093e25208812a95f36ae8892e331.gif)
![2022年北京市海淀区第四中学数学八年级第一学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view/9f811093e25208812a95f36ae8892e33/9f811093e25208812a95f36ae8892e332.gif)
![2022年北京市海淀区第四中学数学八年级第一学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view/9f811093e25208812a95f36ae8892e33/9f811093e25208812a95f36ae8892e333.gif)
![2022年北京市海淀区第四中学数学八年级第一学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view/9f811093e25208812a95f36ae8892e33/9f811093e25208812a95f36ae8892e334.gif)
![2022年北京市海淀区第四中学数学八年级第一学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view/9f811093e25208812a95f36ae8892e33/9f811093e25208812a95f36ae8892e335.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC的面积是1cm2,AD垂直于∠ABC的平分线BD于点D,连接DC,则与△BDC面积相等的图形是()A. B. C. D.2.如图,在中,,是的平分线交于点.若,,,那么的面积是()A. B. C. D.3.如图,在中,的垂直平分线交于点,交于点.的周长为,的周长为,则的长为()A. B. C. D.4.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b25.下列图形①线段、②角、③等腰三角形、④直角三角形,是轴对称图形的是()A.①② B.③④ C.①②③ D.②③④6.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2 B.﹣8x3+8x2 C.﹣8x3 D.8x37.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形 B.矩形 C.正八边形 D.正六边形8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°9.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,,分别对应下列六个字:海、爱、我、美、游、北,现将因式分解,结果呈现的密码信息可能是()A.我爱游 B.北海游 C.我爱北海 D.美我北海10.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°11.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,,312.我国古代数学名著《孙子算经》记载一道题,大意为100个和尚吃了100个馒头,已知个大和尚吃个馒头,个小和尚吃个馒头,问有几个大和尚,几个小和尚?若设有个大和尚,个小和尚,那么可列方程组为()A. B. C. D.二、填空题(每题4分,共24分)13.已知,则的值等于___________.14.若关于x的分式方程+2无解,则m的值为________.15.有两个正方形,现将放在的内部得图甲,将并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形的边长之和为________.16.若实数、满足,则________.17.一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____.18.若|3x+2y+1|+=0,则x﹣y=_____三、解答题(共78分)19.(8分)如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.(1)若直线AB解析式为,①求点C的坐标;②求△OAC的面积.(2)如图2,作的平分线ON,若AB⊥ON,垂足为E,OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.20.(8分)问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).21.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△ACQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.(10分)△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有个.23.(10分)综合与探究(1)操作发现:如图1,点D是等边△ABC边BA上一动点(点D与点B不重合),连结DC,以DC为边在CD上方作等边△DCF,连结AF,你能发现线段AF与BD之间的数量关系吗?证明你发现的结论.(2)类比猜想:如图2,当动点D运动至等边△ABC边BA的延长线上时,其余条件不变,猜想:(1)中的结论是否成立,并说明理由.(3)拓展探究:如图3.当动点D在等边△ABC边BA上运动时(点D与点B不重合),连结DC,以DC为边在CD上方和下方分别作等边△DCF和等边△DCF′,连结AF,BF′,探究:AF、BF′与AB有何数量关系?并说明理由.24.(10分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若△ABC的面积为4,求的解析式.25.(12分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5频数分布表分组
划记
频数
2.0<x≤3.5
正正
11
3.5<x≤5.0
19
5.0<x≤6.5
6.5<x≤8.0
8.0<x≤9.5
2
合计
50
(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?26.“金源”食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用(元)与包装盒个数(个)满足图中的射线所示的函数关系;方案二:租赁机器自己加工,所需费用(元)(包括租赁机器的费用和生产包装盒的费用)与包装盒个数(个)满足图中射线所示的函数关系.根据图象解答下列问题:(1)点的坐标是_____________,方案一中每个包装盒的价格是___________元,射线所表示的函数关系式是_____________.(2)求出方案二中的与的函数关系式;(3)你认为选择哪种方案更省钱?请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】利用等腰三角形“三线合一”的性质以及与三角形中线有关的面积计算,求得阴影面积为0.5,再计算各选项中图形的面积比较即可得出答案.【详解】延长AD交BC于E,∵BD是∠ABC平分线,且BD⊥AE,根据等腰三角形“三线合一”的性质得:AD=DE,∴,,∴,A、,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意;故选:D.【点睛】本题考查了等腰三角形的判定和性质,三角形中线有关的面积计算,熟知等腰三角形“三线合一”的性质是解题的关键.2、A【分析】作DE⊥AB,由角平分线性质可得DE=ED,再根据三角形的面积公式代入求解即可.【详解】过点D作DE⊥AB交AB于E,∵AD平分∠BAC,∴ED=CD=m,∵AB=n,∴S△ABC=.故选A.【点睛】本题考查角平分线的性质,关键在于通过角平分线的性质得到AB边上高的长度.3、B【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB的垂直平分线交AB于点D,∴AE=BE,∵△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,∴AB=△ABC的周长-△ACE的周长=19-13=6,故答案为:B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.4、C【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】解:甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即,乙图中阴影部分长方形的长为,宽为,阴影部分的面积为,根据两个图形中阴影部分的面积相等可得.故选:C.【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.5、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得到轴对称图形,再根据对称轴的条数进行进一步筛选可得答案.【详解】解:根据轴对称图形的性质得出:线段,角,等腰三角形都是轴对称图形,故一共有3个轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形,关键是找到图形的对称轴.6、C【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7、C【解析】因为正八边形的每个内角为,不能整除360度,故选C.8、C【分析】先根据平行线的性质得出的度数,进而可得出结论.【详解】解:,,故选:【点睛】此题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.9、C【解析】原式提取公因式,再利用平方差公式分解,确定出密码信息即可.【详解】原式=2(x+y)(x−y)(a−b),则呈现的密码信息可能是我爱北海,故选C【点睛】此题考查提公因式法与公式法的综合运用,因式分解的应用,解题关键在于掌握运算法则.10、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.11、B【解析】试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D、,不可以构成直角三角形,故本选项错误.故选B.考点:勾股定理的逆定理.12、C【分析】设有m个大和尚,n个小和尚,题中有2个等量关系:1个和尚吃了1个馒头,大和尚吃的馒头+小和尚吃的馒头=1.【详解】解:设有m个大和尚,n个小和尚,根据数量关系式可得:,故选C.【点睛】本题考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、填空题(每题4分,共24分)13、【分析】先进行配方计算出m,n的值,即可求出的值.【详解】,则,故答案为:.【点睛】本题是对完全平方非负性的考查,熟练掌握配方知识和完全平方非负性是解决本题的关键.14、1【解析】分析:把原方程去分母化为整式方程,求出方程的解得到x的值,由分式方程无解得到分式方程的分母为0,求出x的值,两者相等得到关于m的方程,求出方程的解即可得到m的值.详解:去分母得:x﹣2=m+2(x﹣3),整理得:x=4﹣m.∵原方程无解,得到x﹣3=0,即x=3,∴4﹣m=3,解得:m=1.故答案为1.点睛:本题的关键是让学生理解分式方程无解就是分母等于0,同时要求学生掌握解分式方程的方法,以及转化思想的运用.学生在去分母时,不要忽略分母为1的项也要乘以最简公分母.15、1【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b=1,故答案为:1.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.16、1【分析】先根据非负数的性质求出、的值,再求出的值即可.【详解】解:∵,∴,解得,,∴.故答案为1.【点睛】本题考查的是非负数的性质,属于基础题型,熟知非负数的性质:几个非负数的和为0时,其中每一项必为0是解答此题的关键.17、【分析】根据”上加下减”的平移规律解答即可.【详解】解:一次函数的图像沿轴向上平移3个单位长度,则平移后的图像所对应的函数表达为:.故答案:【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k值不变,解析式变化的规律是:上加下减,左加右减.18、﹣1【分析】根据绝对值和算术平方根的非负性得到方程组,解方程组后即可得到答案.【详解】解:∵|3x+2y+1|+=0,∴,解得,∴x﹣y=﹣11﹣16=﹣1.故答案为:﹣1.【点睛】此题考查绝对值和算术平方根的非负性,根据非负性得到方程组是解题的关键.三、解答题(共78分)19、(1)①C(4,4);②12;(2)存在,1【解析】试题分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标;②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可;(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=1,AQ+PQ存在最小值,最小值为1.(1)①由题意,解得所以C(4,4);②把代入得,,所以A点坐标为(6,0),所以;(2)由题意,在OC上截取OM=OP,连结MQ∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为12,所以AM=12÷4=1,∴AQ+PQ存在最小值,最小值为1.考点:一次函数的综合题点评:本题知识点多,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.20、(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵是等边三角形∴AB=BC,∵DF∥AC∴,∠BDF=∠BCA∴∴是等边三角形,∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边的外角平分线∴∵是等边三角形,点D是BC的中点∴AD⊥BC∴∵∴在与中∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F∵是等边三角形∴AB=BC,∵DF∥AC∴∴∴是等边三角形,∴BF=BD∴AF=DC∵CE是等边的外角平分线∴∵∠ADC是的外角∴∵∴∠FAD=∠CDE在与中∴∴AD=DE;(3)如下图,是等边三角形.证明:∵∴∵CE平分∴CE垂直平分AD∴AE=DE∵∴是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.21、(1)证明见解析;(2)△APQ是等边三角形.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【详解】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.22、(1)作图见解析,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)见解析;(3)1.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,根据平移的性质和轴对称的性质先找出对应顶点的坐标,顺次连接即可;
(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小;
(3)在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,即可得到Q点的数量.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求,根据图形可得,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);
(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;
(3)根据点Q在y轴上且满足△ACQ为等腰三角形,在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,可得这样的Q点有1个.
故答案为:1.【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,多数情况要作点关于某直线的对称点.23、(1)AF=BD,证明见解析;(2)AF=BD,理由见解析;(3)AF+BF′=AB,理由见解析.【分析】(1)如图①中中,结论:AF=BD.证明△BCD≌△ACF(SAS)可得结论.(2)如图②中,结论:AF=BD.证明△BCD≌△ACF(SAS)可得结论.(3)如图③中.结论:AF+BF′=AB.利用全等三角形的性质解决问题即可.【详解】解:(1)如图①中中,结论:AF=BD.理由:∵△ABC,△DCF都是等边三角形,∴CB=CA,CD=CF,∠BCA=∠DCF=60°,∴∠BCD=∠ACF,∴△BCD≌△ACF(SAS),∴BD=CF.(2)如图②中,结论:AF=BD.理由:∵△ABC,△DCF都是等边三角形,∴CB=CA,CD=CF,∠BCA=∠DCF=60°,∴∠BCD=∠ACF,∴△BCD≌△ACF(SAS),∴BD=CF.(3)如图③中.结论:AF+BF′=AB.理由:∵△ABC,△DCF都是等边三角形,∴CB=CA,CD=CF,∠BCA=∠DCF=60°,∴∠BCD=∠ACF,∴△BCD≌△ACF(SAS),∴BD=CF.同法可证:△ACD≌△BCF′(SAS),∴AD=BF′,∴AF+BF′=BD+AD=AB.【点睛】此题考查全等三角形的判定与性质、等边三角形的性质.等边三角形的三条边都相等,三个内角都是60°.解题关键在于掌握各性质定义和判定定理.24、(1)(0,3);(2).【分析】(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入即可得到的解析式.【详解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴点B的坐标是(0,3).(2)∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球核电用钢管行业调研及趋势分析报告
- 2025年全球及中国钢制垂直推拉门行业头部企业市场占有率及排名调研报告
- 2025-2030全球微孔织物行业调研及趋势分析报告
- 2025-2030全球半导体电镀前处理剂行业调研及趋势分析报告
- 2025-2030全球热水箱行业调研及趋势分析报告
- 2025年全球及中国手机支付安全行业头部企业市场占有率及排名调研报告
- 2025年全球及中国超高压HPP灭菌设备行业头部企业市场占有率及排名调研报告
- 液氨运输合同模板
- 2025员工入股合同(美容美发)
- 外墙保温劳务分包合同
- Unit6AtthesnackbarStorytimeDiningwithdragons(课件)译林版英语四年级上册
- 2023年四川省公务员录用考试《行测》真题卷及答案解析
- 机电一体化系统设计-第5章-特性分析
- 2025年高考物理复习压轴题:电磁感应综合问题(原卷版)
- 雨棚钢结构施工组织设计正式版
- 医院重点监控药品管理制度
- 2024尼尔森IQ中国本土快消企业调研报告
- 2024年印度辣椒行业状况及未来发展趋势报告
- 骨科医院感染控制操作流程
- 铸铝焊接工艺
- 《社区康复》课件-第六章 骨关节疾病、损伤患者的社区康复实践
评论
0/150
提交评论