2022-2023学年云南省昆明市五华区昆明长城中学数学八年级第一学期期末教学质量检测模拟试题含解析_第1页
2022-2023学年云南省昆明市五华区昆明长城中学数学八年级第一学期期末教学质量检测模拟试题含解析_第2页
2022-2023学年云南省昆明市五华区昆明长城中学数学八年级第一学期期末教学质量检测模拟试题含解析_第3页
2022-2023学年云南省昆明市五华区昆明长城中学数学八年级第一学期期末教学质量检测模拟试题含解析_第4页
2022-2023学年云南省昆明市五华区昆明长城中学数学八年级第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.“等腰三角形两底角相等”的逆命题是()A.等腰三角形“三线合一”B.底边上高和中线重合的三角形等腰C.两个角互余的三角形是等腰三角形D.有两个角相等的三角形是等腰三角形2.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄,如图是兴庆公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC’于是在草坪内走出了一条不该有的“路AC”,已知AB=40米,BC=30米,他们踩坏了___米的草坪,只为少走___米路()A.20、50 B.50、20 C.20、30 D.30、203.若△ABC三个角的大小满足条件∠A:∠B:∠C=1:1:3,则∠A=()A.30° B.36° C.45° D.60°4.如图,在中,,边上的垂直平分线分别交、于点、,若的周长是11,则直线上任意一点到、距离和最小为()A.28 B.18 C.10 D.75.如图,为内一点,平分,,,若,,则的长为()A.5 B.4 C.3 D.26.不等式1+x≥2﹣3x的解是()A. B. C. D.7.把分式方程化成整式方程,去分母后正确的是()A. B.C. D.8.下列运算错误的是()A. B. C. D.9.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.910.下列各式中为最简二次根式的是()A. B. C. D.11.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.如果CE=12,则ED的长为()A.3 B.4 C.5 D.612.下列四个分式中,是最简分式的是()A. B. C. D.二、填空题(每题4分,共24分)13.若方程是一元一次方程,则a的值为__________.14.如图,在四边形中,且,,,平分交的延长线于点,则_________.15.若a+b=3,则代数式(-a)÷=_____________.16.化简:=_____________.17.分解因式__________.18.如图,已知,添加下列条件中的一个:①,②,③,其中不能确定≌△的是_____(只填序号).三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点B,且与正比例函数的图象交点为.(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在轴上是否存在一点P使为等腰三角形,若存在,求出所有符合条件的点P的坐标.20.(8分)“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与;

D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.21.(8分)计算或因式分解:(1)计算:;(2)因式分解:;(3)计算:.22.(10分)如图,在中,点是上一点,分别过点、两点作于点,于点,点是边上一点,连接,且.求证:.23.(10分)阅读下列解题过程:(1);(2);请回答下列问题:(1)观察上面解题过程,请直接写出的结果为__________________.(2)利用上面所提供的解法,请化简:24.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张.25.(12分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26.为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?

参考答案一、选择题(每题4分,共48分)1、D【分析】直接交换原命题的题设和结论即可得到正确选项.【详解】解:“等腰三角形两底角相等”的逆命题是有两个角相等的三角形是等腰三角形,故选:D.【点睛】本题考查互逆命题,解题的关键是掌握逆命题是直接交换原命题的题设和结论.2、B【分析】根据勾股定理求出AC即可解决问题.【详解】在Rt△ABC中,∵AB=40米,BC=30米,∴AC50,30+40﹣50=20,∴他们踩坏了50米的草坪,只为少走20米的路.故选:B.【点睛】本题考查了勾股定理,解题的关键是理解题意,属于中考基础题.3、B【分析】根据三角形内角和为180º进行计算即可.【详解】∵∠A:∠B:∠C=1:1:3且三角形内角和为180º,∴∠A=.故选:B.【点睛】考查了三角形的内角和定理,解题关键是熟记三角形内角和定理:三角形内角和为180º.4、D【分析】根据垂直平分线的性质和已知三角形的周长进行计算即可求得结果.【详解】解:∵DE是BC的中垂线,∴BE=EC,则AB=EB+AE=CE+EA,又∵△ACE的周长为11,故AB=11−4=1,直线DE上任意一点到A、C距离和最小为1.故选:D.【点睛】本题考查的是轴对称—最短路线问题,线段垂直平分线的性质(垂直平分线上任意一点到线段两端点的距离相等)有关知识,难度简单.5、A【分析】根据已知条件,延长BD与AC交于点F,可证明△BDC≌△FDC,根据全等三角形的性质得到BD=DF,再根据得AF=BF,即可AC.【详解】解:延长BD,与AC交于点F,∵∴∠BDC=∠FDC=90°∵平分,∴∠BCD=∠FCD在△BDC和△FDC中∴△BDC≌△FDC∴BD=FD=1BC=FC=3∵∴AF=BF∵,,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A【点睛】本题考查的是三角形的判定和性质,全等三角形的对应边相等,是求线段长的依据,本题的AC=AF+FC,AF,FC用已知线段来代替.6、B【分析】按照解不等式的步骤移项、合并同类项、系数化1,进行求解即可.【详解】移项得,x+3x≥2﹣1,合并同类项得,4x≥1,化系数为1得,.故选:B.【点睛】此题主要考查不等式的求解,熟练掌握,即可解题.7、B【分析】分式方程两边乘以最简公分母去分母即可得到结果.【详解】分式方程去分母得:,

故选:B.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.8、A【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(-)2=2,计算正确,故本选项错误;故选A.【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.9、C【分析】首先根据Rt△ABC的勾股定理得出AB的长度,根据AM=AC得出BM的长度,然后根据BN=BC得出BN的长度,从而根据MN=BN-BM得出答案.【详解】∠ACB=90°,AC=40,CB=9AB===41又AM=AC,BN=BCAM=40,BN=9BM=AB-AM=41-40=1MN=BN-BM=9-1=8故选C考点:勾股定理10、C【分析】根据最简二次根式的定义解答即可.【详解】A、,故不是最简二次根式;B、,故不是最简二次根式;C,、是最简二次根式,符合题意;D、,故不是最简二次根式;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.11、D【分析】根据线段的垂直平分线的性质得到EB=EC=12,根据直角三角形30度角的性质解答即可.【详解】解:∵DE是BC的垂直平分线,∴EB=EC=12,∵∠B=30°,∠EDB=90°,∴DE=EB=6,故选D.【点睛】本题考查的是线段的垂直平分线的性质和直角三角形30度角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12、A【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】是最简分式;==x+1,不是最简分式;=,不是最简分式;==a+b,不是最简分式.故选A.【点睛】此题主要考查了最简分式的概念,一个分式的分子与分母没有非零次的公因式时叫最简分式,看分式的分子分母有没有能约分的公因式是解题关键.二、填空题(每题4分,共24分)13、1【分析】根据一元一次方程的最高次数是1,求出a的值.【详解】解:,.故答案是:1.【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.14、3;【分析】由,AE平分,得到∠EAB=∠F,则AB=BF=8,然后即可求出CF的长度.【详解】解:∵,∴∠DAE=∠F,∵AE平分,∴∠DAE=∠EAB,∴∠EAB=∠F,∴AB=BF=8,∵,∴;故答案为:3.【点睛】本题考查了平行线的性质,角平分线的定义,以及等角对等边,解题的关键是熟练掌握所学的性质,得到AB=BF.15、-3【分析】按照分式的运算法则进行运算化简,然后再把a+b=3代入即可求值.【详解】解:原式,又,∴原式=,故答案为.【点睛】本题考查了分式的加减乘除运算法则及化简求值,熟练掌握分式的运算法则是解决本题的关键.16、【解析】原式==17、【解析】试题解析:故答案为点睛:因式分解的常用方法:提公因式法,公式法,十字相乘法,分组分解法.18、②.【分析】一般三角形全等的判定方法有SSS,SAS,AAS,ASA,据此可逐个对比求解.【详解】∵已知,且∴若添加①,则可由判定≌;若添加②,则属于边边角的顺序,不能判定≌;若添加③,则属于边角边的顺序,可以判定≌.故答案为②.【点睛】本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.三、解答题(共78分)19、(1),;(2)点D的坐标为或;(3)或或或.【分析】(1)根据待定系数法即可解决;(2)分两种情形讨论,添加辅助线构造全等三角形即可求出点D坐标;(3)分OP=OC、CP=CO、PC=PO三种情形即可得出结论.【详解】解:(1)正比例函数的图象经过点,,,正比例函数解析式为,一次函数的图象经过,,,,一次函数为.(2)①当时,如图1,作轴垂足为M,,,,在与中:,,,,.②当时,作轴垂足为N,同理得,,,,D点坐标为或.(3)设点,,,,,当时,,,或,当时,,或(舍),,当时,,,,即:或或或.【点睛】此题是一次函数综合题,主要考查待定系数法求一次函数、全等三角形的判定和性质、勾股定理等知识,学会分类讨论的数学思想是正确解题的关键.20、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;

(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C类别人数占被调查人数的比例可得;

(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,

补全条形图如下:

C类所对应扇形的圆心角的度数为360°×=54°;

(3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×=100人.点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.21、(1)3;(2);(3)【分析】(1)根据立方根的定义、算术平方根的定义和绝对值的定义计算即可;(2)先根据多项式乘多项式法则去括号,然后利用完全平方公式因式分解即可;(3)根据幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则计算即可.【详解】解:(1)===3(2)===(3)====【点睛】此题考查的是实数的混合运算、因式分解和整式的乘除法,掌握立方根的定义、算术平方根的定义、绝对值的定义、多项式乘多项式法则、利用完全平方公式因式分解、幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则是解决此题的关键.22、见解析【分析】先根据题意判断,得到,之后因为,即可得到,利用内错角相等,两直线平行,即可解答.【详解】解:证明:∵在中,点是上一点,于点,于点,∴,∴,∵,∴,∴.【点睛】本题考查的主要是平行线的性质和判定,在本题中,用到的相关知识有:垂直于同一条直线的两条直线互相平行;两直线平行,同位角相等;内错角相等,两直线平行.23、(1);(2)9【分析】(1)利用已知数据变化规律直接得出答案;(2)利用分母有理化的规律将原式化简进而求出即可.【详解】解:(1)=.(2)=-1+-+-+…+-+-=-1+=-1+10=9【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.24、解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)甲、乙单位购买本次足球赛门票分别为500张、200张.【分析】(1)根据题意可直接写出用x表示的总费用表达式;(2)根据方案一与方案二的函数关系式分类讨论;(3)假设乙单位购买了a张门票,那么甲单位的购买的就是700-a张门票,分别就乙单位按照方案二:①a不超过100;②a超过100两种情况讨论a取值的合理性.从而确定求甲、乙两单位各购买门票数.【详解】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y=80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:b≤1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论