版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.2.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.3.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.240,18 B.200,20C.240,20 D.200,184.若均为任意实数,且,则的最小值为()A. B. C. D.5.已知向量,且,则m=()A.−8 B.−6C.6 D.86.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.7.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.8.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)9.已知集合,,则集合子集的个数为()A. B. C. D.10.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件11.若,则下列不等式不能成立的是()A. B. C. D.12.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知复数(为虚数单位),则的共轭复数是_____,_____.14.如图,已知扇形的半径为1,面积为,则_____.15.已知内角的对边分别为外接圆的面积为,则的面积为_________.16.已知平面向量与的夹角为,,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.18.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.82819.(12分)如图,三棱锥中,点,分别为,的中点,且平面平面.求证:平面;若,,求证:平面平面.20.(12分)在中,角,,的对边分别为,其中,.(1)求角的值;(2)若,,为边上的任意一点,求的最小值.21.(12分)设函数,,(Ⅰ)求曲线在点(1,0)处的切线方程;(Ⅱ)求函数在区间上的取值范围.22.(10分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【题目详解】由题意,设每一行的和为故因此:故故选:D【答案点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2.C【答案解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【题目详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【答案点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.3.A【答案解析】
利用统计图结合分层抽样性质能求出样本容量,利用条形图能求出抽取的户主对四居室满意的人数.【题目详解】样本容量为:(150+250+400)×30%=240,∴抽取的户主对四居室满意的人数为:故选A.【答案点睛】本题考查样本容量和抽取的户主对四居室满意的人数的求法,是基础题,解题时要认真审题,注意统计图的性质的合理运用.4.D【答案解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【题目详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【答案点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.5.D【答案解析】
由已知向量的坐标求出的坐标,再由向量垂直的坐标运算得答案.【题目详解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故选D.【答案点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.6.C【答案解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【题目详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【答案点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.7.D【答案解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.8.C【答案解析】
求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【题目详解】由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其图象如图所示.令x3+x2-=-,得x=0或x=-3,则结合图象可知,解得a∈[-3,0),故选C.【答案点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.9.B【答案解析】
首先求出,再根据含有个元素的集合有个子集,计算可得.【题目详解】解:,,,子集的个数为.故选:.【答案点睛】考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.10.B【答案解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【题目详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【答案点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.11.B【答案解析】
根据不等式的性质对选项逐一判断即可.【题目详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【答案点睛】本题考查不等关系和不等式,属于基础题.12.B【答案解析】
依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.【题目详解】根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故选B.【答案点睛】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模.【题目详解】,则复数的共轭复数为,且.故答案为:;.【答案点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题.14.【答案解析】
根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公式求出.【题目详解】设角,则,,所以在等腰三角形中,,则.故答案为:.【答案点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.15.【答案解析】
由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,从而有,于是可得三角形边长,可得面积.【题目详解】设外接圆半径为,则,由正弦定理,得,∴,,.故答案为:.【答案点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得面积,掌握正弦定理是解题关键.16.【答案解析】
根据已知求出,利用向量的运算律,求出即可.【题目详解】由可得,则,所以.故答案为:【答案点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2).【答案解析】
(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出.【题目详解】(1)在中,由,得,由,得,所以,所以,,因为在中,,所以,因为(当且仅当时取等),所以长的最小值为;(2)在三角形中,因为为中线,所以,,所以,因为,所以,所以,由(1)知,所以,或,,所以,因为为角平分线,,,或2,所以,或,所以.【答案点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题.18.(1)多2350人;(2)有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【答案解析】
(1)根据题意,知100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,即可估计该地区购买“小爱同学”的女性人数和购买“天猫精灵”的女性的人数,即可求得答案;(2)根据列联表和给出的公式,求出,与临界值比较,即可得出结论.【题目详解】解:(1)由题可知,100人中购买“小爱同学”的女性有55人,购买“天猫精灵”的女性有40人,由于地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,估计购买“小爱同学”的女性有人.估计购买“天猫精灵”的女性有人.则,∴估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多2350人.(2)由题可知,,∴有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关.【答案点睛】本题考查随机抽样估计总体以及独立性检验的应用,考查计算能力.19.证明见解析;证明见解析.【答案解析】
利用线面平行的判定定理求证即可;为中点,为中点,可得,,,可知,故为直角三角形,,利用面面垂直的判定定理求证即可.【题目详解】解:证明:为中点,为中点,,又平面,平面,平面;证明:为中点,为中点,,又,,则,故为直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【答案点睛】本题考查线面平行和面面垂直的判定定理的应用,属于基础题.20.(1);(2).【答案解析】
(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中,由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【题目详解】(1),,由题知,,则,则,,;(2)在中,由余弦定理得,,设,其中.在中,,,,,所以,,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【答案点睛】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.21.(1)(2)【答案解析】分析:(1)先断定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度空心砖绿色建材采购协议3篇
- 二零二五版子女监护权变更与财产分割协议书范本9篇
- 2025年度旅行社与旅游交通枢纽合作协议范本4篇
- 二零二五版冷冻食品一次性冷链配送协议2篇
- 二零二五年版ERP系统跨区域部署与本地化服务合同3篇
- 2025年绿色厂房租赁及节能改造服务协议4篇
- 二零二五年度集团高层管理人员职务调整及聘任合同3篇
- 2024水利工程环境监理规范合同范本3篇
- 二零二五版商务中心租赁合同示例3篇
- 临时仓库租赁合同(2024年版)
- 农民工工资表格
- 【寒假预习】专题04 阅读理解 20篇 集训-2025年人教版(PEP)六年级英语下册寒假提前学(含答案)
- 2024年突发事件新闻发布与舆论引导合同
- 地方政府信访人员稳控实施方案
- 小红书推广合同范例
- 商业咨询报告范文模板
- 2024年智能监狱安防监控工程合同3篇
- 幼儿园篮球课培训
- AQ 6111-2023个体防护装备安全管理规范知识培训
- 老干工作业务培训
- 基底节脑出血护理查房
评论
0/150
提交评论