2022年山东省沂水县联考数学九上期末综合测试模拟试题含解析_第1页
2022年山东省沂水县联考数学九上期末综合测试模拟试题含解析_第2页
2022年山东省沂水县联考数学九上期末综合测试模拟试题含解析_第3页
2022年山东省沂水县联考数学九上期末综合测试模拟试题含解析_第4页
2022年山东省沂水县联考数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.抛物线与坐标轴的交点个数是()A.3 B.2 C.1 D.02.下列交通标志中,是中心对称图形的是()A. B. C. D.3.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为()A.8 B.4 C.1 D.54.已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个点为(3,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣55.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°6.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.7.如图,在矩形ABCD中,AB=4,AD=3,若以A为圆心,4为半径作⊙A.下列四个点中,在⊙A外的是()A.点A B.点B C.点C D.点D8.相邻两根电杆都用锅索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离9.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心,若∠B=25°,则∠C的大小等于()A.25° B.20° C.40° D.50°10.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.611.如图图形中,是轴对称图形又是中心对称图形的是()A. B.C. D.12.已知a≠0,下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.a3÷a2=a D.(a2)3=a5二、填空题(每题4分,共24分)13.某10人数学小组的一次测试中,有4人的成绩都是80分,其他6人的成绩都是90分,则这个小组成绩的平均数等于_____分.14.如图,在中,,点为的中点.将绕点逆时针旋转得到,其中点的运动路径为,则图中阴影部分的面积为______.15.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有________种16.如图所示的网格是正方形网格,线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,则α的值为_____.17.如图,点在双曲线上,且轴于,若的面积为,则的值为__________.18.如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____.三、解答题(共78分)19.(8分)如图,已知中,以为直径的⊙交于,交于,,求的度数.20.(8分)如图,⊙O过▱ABCD的三顶点A、D、C,边AB与⊙O相切于点A,边BC与⊙O相交于点H,射线AD交边CD于点E,交⊙O于点F,点P在射线AO上,且∠PCD=2∠DAF.(1)求证:△ABH是等腰三角形;(2)求证:直线PC是⊙O的切线;(3)若AB=2,AD=,求⊙O的半径.21.(8分)有两个口袋,口袋中装有两个分别标有数字2,3的小球,口袋中装有三个分别标有数字的小球(每个小球质量、大小、材质均相同).小明先从口袋中随机取出一个小球,用表示所取球上的数字;再从口袋中顺次取出两个小球,用表示所取两个小球上的数字之和.(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;(2)求的值是整数的概率.22.(10分)在下列网格图中,每个小正方形的边长均为个单位中,,且三点均在格点上.(1)画出绕顺时针方向旋转后的图形;(2)求点运动路径的长(结果保留).23.(10分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.24.(10分)某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?25.(12分)“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?26.已知,二次函数(m,n为常数且m≠0)(1)若n=0,请判断该函数的图像与x轴的交点个数,并说明理由;(2)若点A(n+5,n)在该函数图像上,试探索m,n满足的条件;(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且p<q<r,求m的取值范围.

参考答案一、选择题(每题4分,共48分)1、A【详解】解:∵抛物线解析式,令,解得:,∴抛物线与轴的交点为(0,4),令,得到,∴抛物线与轴的交点分别为(,0),(1,0).综上,抛物线与坐标轴的交点个数为1.故选A.【点睛】本题考查抛物线与轴的交点,解一元一次、二次方程.2、D【解析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、C【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.【详解】解:连接DO∵PD与⊙O相切于点D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,设PA=x,则,解得:x=1,∴PA=1.故答案为C.【点睛】本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.4、A【分析】利用抛物线的对称性确定抛物线与x轴的另一个点为(﹣1,0),然后利用抛物线与x轴的交点问题求解.【详解】解:∵抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个点为(1,0),∴抛物线与x轴的另一个点为(﹣1,0),∴关于x的一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=1.故选:A.【点睛】本题考查了抛物线与轴的交点:把求二次函数,,是常数,与轴的交点坐标问题转化为解关于的一元二次方程.也考查了二次函数的性质.5、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6、D【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选D.【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7、C【解析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.8、A【分析】如图,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得对应高CE与BE之比,根据CD∥PE可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【详解】如图,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴,∴,∵CD∥PE,∴△BPE∽△BDC,∴,∴,解得:PE=2.1.故选:A.【点睛】本题考查相似三角形的应用,平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;正确作出辅助线构建相似三角形并熟练掌握相似三角形的判定定理是解题关键.9、C【解析】连接OA,根据切线的性质,即可求得∠C的度数.【详解】如图,连接OA.∵AC是⊙O的切线,∴∠OAC=90°.∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选C.【点睛】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.10、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.11、D【解析】试题解析:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转后它的两部分能够重合;即不满足中心对称图形的定义,故此选项不合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形,故此选项不合题意;D、是轴对称图形,又是中心对称图形,故此选项符合题意;故选D.12、C【分析】结合选项分别进行同底数幂的乘法、同底数幂的除法、幂的乘方的运算,选出正确答案.【详解】A、a2和a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,原式计算错误,故本选项错误;C、a3÷a2=a,计算正确,故本选项正确;D、(a2)3=a6,原式计算错误,故本选项错误.故选:C.【点睛】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方等运算,掌握运算法则是解答本题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据平均数的定义解决问题即可.【详解】平均成绩=(4×80+6×90)=1(分),故答案为1.【点睛】本题考查平均数的定义,解题的关键是掌握平均数的定义.14、【分析】连接,设AC、DE交于点N,如图,根据题意可得的度数和BM的长度,易证为的中位线,故MN可求,然后利用S阴影=S扇形MBE,代入相关数据求解即可.【详解】解:连接,设AC、DE交于点N,如图,由题意可知,,∴,∵,,且为的中点,∴为的中位线,∴,,∴S阴影=S扇形MBE.【点睛】本题考查了旋转的性质、三角形的中位线定理、扇形面积的计算等知识,属于常考题型,熟练掌握旋转的性质、将所求不规则图形的面积转化为规则图形的面积的和差是解题的关键.15、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;

∴有1种可能使四边形ABCD为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.16、60°或120°【解析】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,根据切线的性质得OC′⊥AB′,OC″⊥AB″,利用直角三角形30度的判定或三角函数求出∠OAC′=30°,从而得到∠BAB′=60°,同理可得∠OAC″=30°,则∠BAB″=120°.【详解】线段AB绕点A顺时针旋转α(0°<α<180°)后与⊙O相切,切点为C′和C″,连接OC′、OC″,则OC′⊥AB′,OC″⊥AB″,在Rt△OAC′中,∵OC′=1,OA=2,∴∠OAC′=30°,∴∠BAB′=60°,同理可得∠OAC″=30°,∴∠BAB″=120°,综上所述,α的值为60°或120°.故答案为60°或120°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了旋转的性质和直角三角形的性质.17、【分析】设点A坐标为(x,y),由反比例函数的几何意义得,根据的面积为,即可求出k的值.【详解】解:设点A的坐标为:(x,y),∴,∴,∴,∵反比例函数经过第二、四象限,则,∴故答案为:.【点睛】本题考查了反比例函数的性质,以及反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义进行解题.18、π.【分析】连接AC、AC′,作BM⊥AC于M,由菱形的性质得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性质得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧长公式即可得出结果.【详解】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴点C经过的路线长==π故答案为:π【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键.三、解答题(共78分)19、40°【分析】连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.【详解】解:连接∵是⊙的直径.∴,∴,∵,∴∴∴,∴.【点睛】本题考查了等腰三角形的性质和圆周角定理,把圆周角转化为圆心角是解题的关键.20、(1)见解析;(2)见解析;(3).【解析】(1)要想证明△ABH是等腰三角形,只需要根据平行四边形的性质可得∠B=∠ADC,再根据圆内接四边形的对角互补,可得∠ADC+∠AHC=180°,再根据邻补角互补,可知∠AHC+∠AHB=180°,从而可以得到∠ABH和∠AHB的关系,从而可以证明结论成立;(2)要证直线PC是⊙O的切线,只需要连接OC,证明∠OCP=90°即可,根据平行四边形的性质和边AB与⊙O相切于点A,可以得到∠AEC的度数,又∠PCD=2∠DAF,∠DOF=2∠DAF,∠COE=∠DOF,通过转化可以得到∠OCP的度数,从而可以证明结论;(3)根据题意和(1)(2)可以得到∠AED=90°,由平行四边形的性质和勾股定理,由AB=2,AD=,可以求得半径的长.【详解】(1)证明:∵四边形ADCH是圆内接四边形,∴∠ADC+∠AHC=180°,又∵∠AHC+∠AHB=180°,∴∠ADC=∠AHB,∵四边形ABCD是平行四边形,∴∠ADC=∠B,∴∠AHB=∠B,∴AB=AH,∴△ABH是等腰三角形;(2)证明:连接OC,如右图所示,∵边AB与⊙O相切于点A,∴BA⊥AF,∵四边形ABCD是平行四边形,∴AB∥CD,∴CD⊥AF,又∵FA经过圆心O,∴,∠OEC=90°,∴∠COF=2∠DAF,又∵∠PCD=2∠DAF,∴∠COF=∠PCD,∵∠COF+∠OCE=90°,∴∠PCD+∠OCE=90°,即∠OCP=90°,∴直线PC是⊙O的切线;(3)∵四边形ABCD是平行四边形,∴DC=AB=2,∵FA⊥CD,∴DE=CE=1,∵∠AED=90°,AD=,DE=1,∴AE=,设⊙O的半径为r,则OA=OD=r,OE=AE﹣OA=4﹣r,∵∠OED=90°,DE=1,∴r2=(4﹣r)2+12,解得,r=,即⊙O的半径是.考点:1.圆的综合题;2.平行四边形的性质;3.勾股定理;4同弧所对的圆心角和圆周角的关系.21、(1)答案见解析;(2).【分析】(1)共有12种等可能的情况,根据题意画出树状图即可;(2)根据树状图列出所有可能的值,即可求出的值是整数的概率.【详解】(1)用树状图法表示小明所取出的三个小球的所有可能结果如下:共有12种等可能的情况;(2)由树状图可知,所有可能的值分别为:共12种情况,且每种情况出现的可能性相同,其中的值是整数的情况有6种.的值是整数的概率.【点睛】本题考查了概率统计的问题,掌握树状图的性质以及画法是解题的关键.22、(1)见解析;(2)【解析】(1)利用网格特点和旋转的性质画图;(2)点C的运动路径是弧形,找到半径,圆心角即可求解.【详解】解:如图所示,即为所求;,∴点C的运动路径是以A为圆心,AC长为半径的弧,点的运动路径的长为:【点睛】本题考查了网格中图形的旋转及旋转轨迹,还考查了弧长公式的运算.23、(1)见解析;(2)见解析【解析】试题分析:圆内接四边形的对角互补.直径所对的圆周角是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论