版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列各分式中,最简分式是()A. B. C. D.2.下列实数中,属于无理数的是()A. B.2﹣3 C.π D.3.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对4.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为().A.49 B.25 C.13 D.15.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.116.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cmB.6cm,6cm,12cmC.5cm,5cm,2cmD.10cm,15cm,17cm7.下列计算,正确的是()A. B.a3÷a=a3 C.a2+a2=a4 D.(a2)2=a48.如图,在中,,,垂直平分,交于点,,则边的长为()A. B. C. D.9.已知且,那么等于()A.0 B. C. D.没有意义10.下列各数中是无理数的是()A. B. C. D.11.已知点A(−1,m)和B(3,n)是一次函数y=-2x+1图象上的两点,则()A.m=n B.m>n C.m<n D.不确定12.的值是()A.0 B.1 C. D.以上都不是二、填空题(每题4分,共24分)13.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是____分.14.如图,在△ABC中,∠BAC=90°.AD⊥BC于点D,若∠C=30°,BD=1,则线段CD的长为_____.15.对于两个非零代数式,定义一种新的运算:x@y=.若x@(x﹣2)=1,则x=____.16.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。17.平面直角坐标系中,点与点之间的距离是____.18.计算=_______.三、解答题(共78分)19.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=1.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)20.(8分)在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.21.(8分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图(1),若∠AOC=,求∠DOE的度数;(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.22.(10分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求该校七年一班此次预选赛的总人数;(2)补全条形统计图,并求出书法所在扇形圆心角的度数;(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?23.(10分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.24.(10分)如图,直线与x轴、y轴分别相交于点F,E,点A的坐标为(-6,0),P(x,y)是直线上的一个动点.(1)试写出点P在运动过程中,△OAP的面积S与x的函数关系式;(2)当点P运动到什么位置,△OAP的面积为,求出此时点P的坐标.25.(12分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.26.计算:(1)﹣12019+﹣(2)(﹣3x2y)2•2x3÷(﹣3x3y4)(3)x2(x+2)﹣(2x﹣2)(x+3)(4)()2019×(﹣2×)2018
参考答案一、选择题(每题4分,共48分)1、C【分析】根据最简分式的概念,可把各分式因式分解后,看分子分母有没有公因式.【详解】=,不是最简分式;=y-x,不是最简分式;是最简分式;==,不是最简分式.故选C.【点睛】此题主要考查了最简分式的概念,看分式的分子分母有没有能约分的公因式是解题关键.2、C【分析】无理数就是无限不循环小数.【详解】解:是分数可以化为无限循环小数,属于有理数,故选项A不合题意;,是分数,属于有理数,故选项B不合题意;π是无理数,故选项C符合题意;,是整数,故选项D不合题意.故选:C.【点睛】理解无理数的概念,同时也需要理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.3、D【详解】试题分析:∵D为BC中点,∴CD=BD,又∵∠BDO=∠CDO=90°,∴在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;所以共有4对全等三角形,故选D.考点:全等三角形的判定.4、A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a2+b2=25,四个三角形的面积=4×ab=25-1=24,∴2ab=24,联立解得:(a+b)2=25+24=1.故选A.5、C【详解】∵一个正多边形的一个外角为36°,∴这个正多边形的边数是360÷36=10,故选C6、B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7、D【分析】运用同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方进行运算即可判断.【详解】A、错误,该选项不符合题意;B、错误,该选项不符合题意;C、错误,该选项不符合题意;D、正确,该选项符合题意;故选:D.【点睛】本题考查了同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.8、C【分析】连接AE,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠BAE=∠B=15°,然后又三角形外角的性质,求得∠AEC的度数,继而根据含30°的直角三角形的性质求得AC的长.【详解】解:连接AE,∵垂直平分,
∴AE=,
∴∠BAE=∠B=15°,
∴∠AEC=∠BAE+∠B=30°,
∵∠C=90°,AE=,
∴AC=AE=5cm.
故选:C.【点睛】本题考查线段垂直平分线的性质、含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.9、B【分析】根据a、b的比例关系式,用未知数表示出a、b的值,然后根据分式的基本性质把a、b的值代入化简即可.【详解】解:设,则原式,故选:B.【点睛】本题考查了分式的基本性质,利用分式的性质进行化简时必须注意所乘的(或所除的)整式不为零.10、C【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.=2,是整数,属于有理数;C.是无理数;D.=4,是整数,属于有理数;故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.11、B【分析】根据一次函数表达式得到k的符号,再根据一次函数的增减性即可得出结论.【详解】解:∵A,B两点在一次函数y=-2x+1的图像上,-2<0,∴一次函数y=-2x+1中y随x的增大而减小,∵A(−1,m),B(3,n),-1<3,∴点A在图像上位于点B左侧,∴m>n,故选B.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性的判定是解决问题的关键.12、B【解析】由零指数幂的定义可知=1.【详解】由零指数幂的定义可知=1,故选B.【点睛】此题主要考察零指数幂.二、填空题(每题4分,共24分)13、93分【分析】按3:3:4的比例算出本学期数学学期平均成绩即可.【详解】小红一学期的数学平均成绩是=93(分),故填:93.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.14、1【分析】求出∠BAD=∠BAC﹣∠DAC=10°,求出AB=2,求出BC=4,则CD可求出.【详解】∵AD⊥BC于点D,∠C=10°,∴∠DAC=60°,∵∠BAC=90°,∴∠BAD=∠BAC﹣∠DAC=10°,∴在Rt△ABD中,AB=2BD=2,∴Rt△ABC中,∠C=10°,∴BC=2AB=4,∴CD=BC﹣BD=4﹣1=1.故答案为:1.【点睛】此题主要考查直角三角形的性质与证明,解题的关键是熟知含10°的直角三角形的性质.15、.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【详解】根据题中的新定义化简得:=1,去分母得:x﹣2+x2=x2﹣2x,解得:x=,经检验x=是分式方程的解.故答案为:.【点睛】此题考查解分式方程,解题关键在于利用转化的思想,解分式方程注意要检验.16、【解析】首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.【点睛】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.17、1【分析】根据点的坐标与勾股定理,即可求解.【详解】根据勾股定理得:AB=,故答案是:1.【点睛】本题主要考查平面直角坐标系中两点的距离,掌握勾股定理是解题的关键.18、【分析】先运用零次幂和负整数次幂化简,然后再计算即可.【详解】解:.故答案为:.【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键.三、解答题(共78分)19、(1)3;(2)见解析【分析】(1)根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.(2)作∠AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P,点P即为所求.【详解】(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为3.故答案为:3.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.【点睛】本题考查了基本作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用两点之间线段最短解决最短问题.20、(1)证明见解析;(2)证明见解析.【解析】(1)连接BD,根据角平分线的性质可得∠BAD=60°,又因为AD=AB,即可证△ABD是等边三角形;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF.【详解】(1)证明:连接BD,∵∠BAC=120°,AD平分∠BAC∴∠BAD=∠DAC=×120°=60°,∵AD=AB,∴△ABD是等边三角形;(2)证明:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BD=AD,∵∠DAC=∠BAC=60°,∴∠DBE=∠DAF,∵∠EDF=60°,∴∠BDE=∠ADF,在△BDE与△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF.【点睛】本题主要考查等边三角形的判定和性质、全等三角形的判定和性质,熟练掌握相关知识点,掌握数形结合的思想是解题的关键.21、(1)20°;(2)当∠AOC的度数是60°或108°时,∠COE=2∠DOB【分析】(1)依据邻补角的定义以及角平分线的定义,即可得到∠COE的度数,进而得出∠DOE的度数;(2)设∠AOC=α,则∠BOC=180°-α,依据OE平分∠BOC,可得∠COE=×(180°-α)=90°-α,再分两种情况,依据∠COE=2∠DOB,即可得到∠AOC的度数.【详解】(1)∵∠AOC=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠COE=×140°=70°,∵∠COD=90°,∴∠DOE=90°-70°=20°;(2)设∠AOC=α,则∠BOC=180°-α,∵OE平分∠BOC,∴∠COE=×(180°-α)=90°-α,分两种情况:当OD在直线AB上方时,∠BOD=90°-α,∵∠COE=2∠DOB,∴90°-α=2(90°-α),解得α=60°.当OD在直线AB下方时,∠BOD=90°-(180°-α)=α-90°,∵∠COE=2∠DOB,∴90°-α=2(α-90°),解得α=108°.综上所述,当∠AOC的度数是60°或108°时,∠COE=2∠DOB.【点睛】本题考查角的计算以及角平分线的定义的运用,解决问题的关键是画出图形,运用分类思想进行求解.22、(1)七年一班此次预选赛的总人数是24人;(2),图见解析;(3)本次比赛全学年约有40名学生获奖【分析】(1)用七年一班版画人数除以版画的百分数即可求得七年一班的参赛人数;
(2)用七年一班总的参赛人数减去版画、独唱、独舞的参赛人数即可求得书法的参赛人数,再用七年一班书法的参赛人数除以七年一班总的参赛人数再乘以360°即可求得七年一班书法所在扇形圆心角的度数,根据求得的数据补全统计图即可;
(3)用参赛总人数除以七年一班的参赛人数,再乘以2即可求解.【详解】(1)(人),故该校七年一班此次预选赛的总人数是24人;(2)书法参赛人数=(人),书法所在扇形圆心角的度数=;补全条形统计图如下:(3)(名)故本次比赛全学年约有40名学生获奖.【点睛】本题考查了条形统计图与扇形统计图的知识,解题的关键是读懂两种统计图,从两种统计图中找到相关数据进行计算.23、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD=,∴BP=BD﹣PD=;②当点F在点C的右侧时,P’和F’分别对应图2中的P和F,如图3所示,则∠CAF=∠CAF',∵BD⊥AC,∴∴∠APD=∠AP'D,∴△是等腰三角形∴AP=AP',PD=P'D=,∴BP=BP'+P'P=;综上所述,线段BP的长为或.【点睛】本题考查了三角形的综合问题,掌握同旁内角互补两直线平行、等腰直角三角形的性质以及判定、勾股定理、全等三角形的性质以及判定是解题的关键.24、(1)S=;(2)P(-2,)或(-14,)【分析】(1)设点P(x,y),将△OAP的面积表示出来,并分点P在第一、二象限和点P在第三象限两种情况进行讨论即可;(2)分别把S=代入(1)中两种情况下的函数关系式,求出点P的横坐标,再分别代入中可求出点P纵坐标.【详解】解:(1)∵P(x,y),∴P到x轴的距离为,∵点A的坐标为(-6,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年西藏客运从业资格证考试试题和答案
- 济宁学院《编排设计》2021-2022学年第一学期期末试卷
- 福建省泉州市永春县华侨中学2024年高三5月联考数学试题测试试题
- 民爆物品安全环境保护制度
- 新能源项目环境影响评估与管理方案
- 生态湿地公园建设项目施工技术专项方案
- 健身房复工复产安全管理制度
- 肉类替代品会员制度与忠诚度计划
- 高空作业安全事故应对方案
- 适应性课程设计
- 2024年陕西省二级建造师继续教育网络考试试题
- 《跨境电商应用英语1》课程标准
- 幼儿园主题活动中家长资源的利用现状研究-毕业论文
- 匾额制作工艺
- 天堂旅行团读书分享
- 计算机毕业设计jsp咖啡馆管理系统论文
- 现在的窗帘行业分析
- 便利店实操手册课件
- 金融业就业课件
- 校园充电桩可行性方案
- 医院信息软件培训方案
评论
0/150
提交评论