《计量经济学导论》ch课件_第1页
《计量经济学导论》ch课件_第2页
《计量经济学导论》ch课件_第3页
《计量经济学导论》ch课件_第4页
《计量经济学导论》ch课件_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter7

MultipleRegressionAnalysiswithQualitativeInformationWooldridge:IntroductoryEconometrics:AModernApproach,5eChapter7MultipleRegressionQualitativeInformationExamples:gender,race,industry,region,ratinggrade,…AwaytoincorporatequalitativeinformationistousedummyvariablesTheymayappearasthedependentorasindependentvariablesAsingledummyindependentvariableDummyvariable:=1ifthepersonisawoman=0ifthepersonisman=thewagegain/lossifthepersonisawomanratherthanaman(holdingotherthingsfixed)MultipleRegressionAnalysis:QualitativeInformationQualitativeInformationDummyvGraphicalIllustrationAlternativeinterpretationofcoefficient:i.e.thedifferenceinmeanwagebetweenmenandwomenwiththesamelevelofeducation.InterceptshiftMultipleRegressionAnalysis:QualitativeInformationGraphicalIllustrationAlternatDummyvariabletrapThismodelcannotbeestimated(perfectcollinearity)Whenusingdummyvariables,onecategoryalwayshastobeomitted:Alternatively,onecouldomittheintercept:ThebasecategoryaremenThebasecategoryarewomenDisadvantages:

1)Moredifficulttotestfordiffe-rencesbetweentheparameters2)R-squaredformulaonlyvalidifregressioncontainsinterceptMultipleRegressionAnalysis:QualitativeInformationDummyvariabletrapThismodelEstimatedwageequationwithinterceptshiftDoesthatmeanthatwomenarediscriminatedagainst?Notnecessarily.Beingfemalemaybecorrelatedwithotherproduc-tivitycharacteristicsthathavenotbeencontrolledfor.Holdingeducation,experience,andtenurefixed,womenearn1.81$lessperhourthanmenMultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiComparingmeansofsubpopulationsdescribedbydummiesDiscussionItcaneasilybetestedwhetherdifferenceinmeansissignificantThewagedifferencebetweenmenandwomenislargerifnootherthingsarecontrolledfor;i.e.partofthedifferenceisduetodiffer-encesineducation,experienceandtenurebetweenmenandwomenNotholdingotherfactorsconstant,womenearn2.51$perhourlessthanmen,i.e.thedifferencebetweenthemeanwageofmenandthatofwomenis2.51$.MultipleRegressionAnalysis:QualitativeInformationComparingmeansofsubpopulatiFurtherexample:EffectsoftraininggrantsonhoursoftrainingThisisanexampleofprogramevaluationTreatmentgroup(=grantreceivers)vs.controlgroup(=nogrant)Istheeffectoftreatmentontheoutcomeofinterestcausal?HourstrainingperemployeeDummyindicatingwhetherfirmreceivedtraininggrantMultipleRegressionAnalysis:QualitativeInformationFurtherexample:EffectsoftrUsingdummyexplanatoryvariablesinequationsforlog(y)DummyindicatingwhetherhouseisofcolonialstyleAsthedummyforcolonialstylechangesfrom0to1,thehousepriceincreasesby5.4percentagepointsMultipleRegressionAnalysis:QualitativeInformationUsingdummyexplanatoryvariabHoldingotherthingsfixed,marriedwomenearn19.8%lessthansinglemen(=thebasecategory)Usingdummyvariablesformultiplecategories1)Definemembershipineachcategorybyadummyvariable2)Leaveoutonecategory(whichbecomesthebasecategory)MultipleRegressionAnalysis:QualitativeInformationHoldingotherthingsfixed,maIncorporatingordinalinformationusingdummyvariablesExample:CitycreditratingsandmunicipalbondinterestratesMunicipalbondrateCreditratingfrom0-4(0=worst,4=best)Thisspecificationwouldprobablynotbeappropriateasthecreditratingonlycontainsordinalinformation.Abetterwaytoincorporatethisinformationistodefinedummies:Dummiesindicatingwhethertheparticularratingapplies,e.g.CR1=1ifCR=1andCR1=0otherwise.Alleffectsaremeasuredincomparisontotheworstrating(=basecategory).MultipleRegressionAnalysis:QualitativeInformationIncorporatingordinalinformatInteractionsinvolvingdummyvariablesAllowingfordifferentslopesInterestinghypotheses=interceptmen=interceptwomen=slopemen=slopewomenInteractiontermThereturntoeducationisthesameformenandwomenThewholewageequationisthesameformenandwomenMultipleRegressionAnalysis:QualitativeInformationInteractionsinvolvingdummyvGraphicalillustrationInteractingboththeinterceptandtheslopewiththefemaledummyenablesonetomodelcompletelyindependentwageequationsformenandwomenMultipleRegressionAnalysis:QualitativeInformationGraphicalillustrationInteractEstimatedwageequationwithinteractiontermNoevidenceagainsthypothesisthatthereturntoeducationisthesameformenandwomenDoesthismeanthatthereisnosignificantevidenceoflowerpayforwomenatthesamelevelsofeduc,exper,andtenure?No:thisisonlytheeffectforeduc=0.Toanswerthequestiononehastorecentertheinteractionterm,e.g.aroundeduc=12.5(=averageeducation).MultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiTestingfordifferencesinregressionfunctionsacrossgroupsUnrestrictedmodel(containsfullsetofinteractions)Restrictedmodel(sameregressionforbothgroups)CollegegradepointaverageStandardizedaptitudetestscoreHighschoolrankpercentileTotalhoursspentincollegecoursesMultipleRegressionAnalysis:QualitativeInformationTestingfordifferencesinregNullhypothesisEstimationoftheunrestrictedmodelAllinteractioneffectsarezero,i.e.thesameregressioncoefficientsapplytomenandwomenTestedindividually,thehypothesisthattheinteractioneffectsarezerocannotberejectedMultipleRegressionAnalysis:QualitativeInformationNullhypothesisAllinteractionJointtestwithF-statisticAlternativewaytocomputeF-statisticinthegivencaseRunseparateregressionsformenandforwomen;theunrestrictedSSRisgivenbythesumoftheSSRofthesetworegressionsRunregressionfortherestrictedmodelandstoreSSRIfthetestiscomputedinthiswayitiscalledtheChow-TestImportant:TestassumesaconstanterrorvarianceaccrossgroupsNullhypothesisisrejectedMultipleRegressionAnalysis:QualitativeInformationJointtestwithF-statisticNulABinarydependentvariable:thelinearprobabilitymodelLinearregressionwhenthedependentvariableisbinaryLinearprobabilitymodel(LPM)Ifthedependentvariableonlytakesonthevalues1and0Inthelinearprobabilitymodel,thecoefficientsdescribetheeffectoftheexplanatoryvariablesontheprobabilitythaty=1MultipleRegressionAnalysis:QualitativeInformationABinarydependentvariable:tDoesnotlooksignificant(butseebelow)Example:Laborforceparticipationofmarriedwomen=1ifinlaborforce,=0otherwiseNon-wifeincome(inthousanddollarsperyear)Ifthenumberofkidsundersixyearsincreasesbyone,thepro-probabilitythatthewomanworksfallsby26.2%MultipleRegressionAnalysis:QualitativeInformationDoesnotlooksignificant(butExample:Femalelaborparticipationofmarriedwomen(cont.)Graphfornwifeinc=50,exper=5,age=30,kindslt6=1,kidsge6=0Negativepredictedprobabilitybutnoproblembecausenowomaninthesamplehaseduc<5.Themaximumlevelofeducationinthesampleiseduc=17.Forthegi-vencase,thisleadstoapredictedprobabilitytobeinthelaborforceofabout50%.MultipleRegressionAnalysis:QualitativeInformationExample:FemalelaborparticipDisadvantagesofthelinearprobabilitymodelPredictedprobabilitiesmaybelargerthanoneorsmallerthanzeroMarginalprobabilityeffectssometimeslogicallyimpossibleThelinearprobabilitymodelisnecessarilyheteroskedasticHeterosceasticityconsistentstandarderrorsneedtobecomputedAdvantangesofthelinearprobabilitymodelEasyestimationandinterpretationEstimatedeffectsandpredictionsoftenreasonablygoodinpracticeVarianceofBer-noullivariableMultipleRegressionAnalysis:QualitativeInformationDisadvantagesofthelinearprMoreonpolicyanalysisandprogramevaluationExample:EffectofjobtraininggrantsonworkerproductivityPercentageofdefectiveitems=1iffirmreceivedtraininggrant,=0otherwiseNoapparenteffectofgrantonproductivityTreatmentgroup:grantreveivers,Controlgroup:firmsthatreceivednograntGrantsweregivenonafirst-come,first-servedbasis.Thisisnotthesameasgivingthemoutrandomly.Itmightbethecasethatfirmswithlessproductiveworkerssawanopportunitytoimproveproductivityandappliedfirst.MultipleRegressionAnalysis:QualitativeInformationMoreonpolicyanalysisandprSelf-selectionintotreatmentasasourceforendogeneityInthegivenandinrelatedexamples,thetreatmentstatusisprobablyrelatedtoothercharacteristicsthatalsoinfluencetheoutcomeThereasonisthatsubjectsself-selectthemselvesintotreatmentdependingontheirindividualcharacteristicsandprospectsExperimentalevaluationInexperiments,assignmenttotreatmentisrandomInthiscase,causaleffectscanbeinferredusingasimpleregressionThedummyindicatingwhetherornottherewastreatmentisunrelatedtootherfactorsaffectingtheoutcome.MultipleRegressionAnalysis:QualitativeInformationSelf-selectionintotreatmentFurtherexampleofanendogenuousdummyregressorArenonwhitecustomersdiscriminatedagainst?Itisimportanttocontrolforothercharacteristicsthatmaybeimportantforloanapproval(fession,unemployment)Omittingimportantcharacteristicsthatarecorrelatedwiththenon-whitedummywillproducespuriousevidencefordiscriminiationDummyindicatingwhetherloanwasapprovedRacedummyCreditratingMultipleRegressionAnalysis:QualitativeInformationFurtherexampleofanendogenuChapter7

MultipleRegressionAnalysiswithQualitativeInformationWooldridge:IntroductoryEconometrics:AModernApproach,5eChapter7MultipleRegressionQualitativeInformationExamples:gender,race,industry,region,ratinggrade,…AwaytoincorporatequalitativeinformationistousedummyvariablesTheymayappearasthedependentorasindependentvariablesAsingledummyindependentvariableDummyvariable:=1ifthepersonisawoman=0ifthepersonisman=thewagegain/lossifthepersonisawomanratherthanaman(holdingotherthingsfixed)MultipleRegressionAnalysis:QualitativeInformationQualitativeInformationDummyvGraphicalIllustrationAlternativeinterpretationofcoefficient:i.e.thedifferenceinmeanwagebetweenmenandwomenwiththesamelevelofeducation.InterceptshiftMultipleRegressionAnalysis:QualitativeInformationGraphicalIllustrationAlternatDummyvariabletrapThismodelcannotbeestimated(perfectcollinearity)Whenusingdummyvariables,onecategoryalwayshastobeomitted:Alternatively,onecouldomittheintercept:ThebasecategoryaremenThebasecategoryarewomenDisadvantages:

1)Moredifficulttotestfordiffe-rencesbetweentheparameters2)R-squaredformulaonlyvalidifregressioncontainsinterceptMultipleRegressionAnalysis:QualitativeInformationDummyvariabletrapThismodelEstimatedwageequationwithinterceptshiftDoesthatmeanthatwomenarediscriminatedagainst?Notnecessarily.Beingfemalemaybecorrelatedwithotherproduc-tivitycharacteristicsthathavenotbeencontrolledfor.Holdingeducation,experience,andtenurefixed,womenearn1.81$lessperhourthanmenMultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiComparingmeansofsubpopulationsdescribedbydummiesDiscussionItcaneasilybetestedwhetherdifferenceinmeansissignificantThewagedifferencebetweenmenandwomenislargerifnootherthingsarecontrolledfor;i.e.partofthedifferenceisduetodiffer-encesineducation,experienceandtenurebetweenmenandwomenNotholdingotherfactorsconstant,womenearn2.51$perhourlessthanmen,i.e.thedifferencebetweenthemeanwageofmenandthatofwomenis2.51$.MultipleRegressionAnalysis:QualitativeInformationComparingmeansofsubpopulatiFurtherexample:EffectsoftraininggrantsonhoursoftrainingThisisanexampleofprogramevaluationTreatmentgroup(=grantreceivers)vs.controlgroup(=nogrant)Istheeffectoftreatmentontheoutcomeofinterestcausal?HourstrainingperemployeeDummyindicatingwhetherfirmreceivedtraininggrantMultipleRegressionAnalysis:QualitativeInformationFurtherexample:EffectsoftrUsingdummyexplanatoryvariablesinequationsforlog(y)DummyindicatingwhetherhouseisofcolonialstyleAsthedummyforcolonialstylechangesfrom0to1,thehousepriceincreasesby5.4percentagepointsMultipleRegressionAnalysis:QualitativeInformationUsingdummyexplanatoryvariabHoldingotherthingsfixed,marriedwomenearn19.8%lessthansinglemen(=thebasecategory)Usingdummyvariablesformultiplecategories1)Definemembershipineachcategorybyadummyvariable2)Leaveoutonecategory(whichbecomesthebasecategory)MultipleRegressionAnalysis:QualitativeInformationHoldingotherthingsfixed,maIncorporatingordinalinformationusingdummyvariablesExample:CitycreditratingsandmunicipalbondinterestratesMunicipalbondrateCreditratingfrom0-4(0=worst,4=best)Thisspecificationwouldprobablynotbeappropriateasthecreditratingonlycontainsordinalinformation.Abetterwaytoincorporatethisinformationistodefinedummies:Dummiesindicatingwhethertheparticularratingapplies,e.g.CR1=1ifCR=1andCR1=0otherwise.Alleffectsaremeasuredincomparisontotheworstrating(=basecategory).MultipleRegressionAnalysis:QualitativeInformationIncorporatingordinalinformatInteractionsinvolvingdummyvariablesAllowingfordifferentslopesInterestinghypotheses=interceptmen=interceptwomen=slopemen=slopewomenInteractiontermThereturntoeducationisthesameformenandwomenThewholewageequationisthesameformenandwomenMultipleRegressionAnalysis:QualitativeInformationInteractionsinvolvingdummyvGraphicalillustrationInteractingboththeinterceptandtheslopewiththefemaledummyenablesonetomodelcompletelyindependentwageequationsformenandwomenMultipleRegressionAnalysis:QualitativeInformationGraphicalillustrationInteractEstimatedwageequationwithinteractiontermNoevidenceagainsthypothesisthatthereturntoeducationisthesameformenandwomenDoesthismeanthatthereisnosignificantevidenceoflowerpayforwomenatthesamelevelsofeduc,exper,andtenure?No:thisisonlytheeffectforeduc=0.Toanswerthequestiononehastorecentertheinteractionterm,e.g.aroundeduc=12.5(=averageeducation).MultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiTestingfordifferencesinregressionfunctionsacrossgroupsUnrestrictedmodel(containsfullsetofinteractions)Restrictedmodel(sameregressionforbothgroups)CollegegradepointaverageStandardizedaptitudetestscoreHighschoolrankpercentileTotalhoursspentincollegecoursesMultipleRegressionAnalysis:QualitativeInformationTestingfordifferencesinregNullhypothesisEstimationoftheunrestrictedmodelAllinteractioneffectsarezero,i.e.thesameregressioncoefficientsapplytomenandwomenTestedindividually,thehypothesisthattheinteractioneffectsarezerocannotberejectedMultipleRegressionAnalysis:QualitativeInformationNullhypothesisAllinteractionJointtestwithF-statisticAlternativewaytocomputeF-statisticinthegivencaseRunseparateregressionsformenandforwomen;theunrestrictedSSRisgivenbythesumoftheSSRofthesetworegressionsRunregressionfortherestrictedmodelandstoreSSRIfthetestiscomputedinthiswayitiscalledtheChow-TestImportant:TestassumesaconstanterrorvarianceaccrossgroupsNullhypothesisisrejectedMultipleRegressionAnalysis:QualitativeInformationJointtestwithF-statisticNulABinarydependentvariable:thelinearprobabilitymodelLinearregressionwhenthedependentvariableisbinaryLinearprobabilitymodel(LPM)Ifthedependentvariableonlytakesonthevalues1and0Inthelinearprobabilitymodel,thecoefficientsdescribetheeffectoftheexplanatoryvariablesontheprobabilitythaty=1MultipleRegressionAnalysis:QualitativeInformationABinarydependentvariable:tDoesnotlooksignificant(butseebelow)Example:Laborforceparticipationofmarriedwomen=1ifinlaborforce,=0otherwiseNon-wifeincome(inthousanddollarsperyear)Ifthenumberofkidsundersixyearsincreasesbyone,thepro-probabilitythatthewomanworksfallsby26.2%MultipleRegressionAnalysis:QualitativeInformationDoesnotlooksignificant(butExample:Femalelaborparticipationofmarriedwomen(cont.)Graphfornwifeinc=50,exper=5,age=30,kindslt6=1,kidsge6=0Negativepredictedprobabilitybutnoproblembecausenowomaninthesamplehaseduc<5.Themaximumlevelofeducationinthesampleiseduc=17.Forthegi-vencase,thisleadstoapredictedprobabilitytobeinthelaborforceofabout50%.MultipleRegressionAnalysis:QualitativeInformationExample:FemalelaborparticipDisadvantagesofthelinearprobabilitymodelPredictedprobabilitiesmaybelargerthanoneorsmallerthanzeroMarginalprobabilityeffectssometimeslogicallyimpossibleThelinearprobabilitymodelisnecessarilyheteroskedasticHeterosceasticityconsistentstandarderrorsneedtobecomputedAdvantangesofthelinearprobabilitymodelEasyestimationan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论