




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter7
MultipleRegressionAnalysiswithQualitativeInformationWooldridge:IntroductoryEconometrics:AModernApproach,5eChapter7MultipleRegressionQualitativeInformationExamples:gender,race,industry,region,ratinggrade,…AwaytoincorporatequalitativeinformationistousedummyvariablesTheymayappearasthedependentorasindependentvariablesAsingledummyindependentvariableDummyvariable:=1ifthepersonisawoman=0ifthepersonisman=thewagegain/lossifthepersonisawomanratherthanaman(holdingotherthingsfixed)MultipleRegressionAnalysis:QualitativeInformationQualitativeInformationDummyvGraphicalIllustrationAlternativeinterpretationofcoefficient:i.e.thedifferenceinmeanwagebetweenmenandwomenwiththesamelevelofeducation.InterceptshiftMultipleRegressionAnalysis:QualitativeInformationGraphicalIllustrationAlternatDummyvariabletrapThismodelcannotbeestimated(perfectcollinearity)Whenusingdummyvariables,onecategoryalwayshastobeomitted:Alternatively,onecouldomittheintercept:ThebasecategoryaremenThebasecategoryarewomenDisadvantages:
1)Moredifficulttotestfordiffe-rencesbetweentheparameters2)R-squaredformulaonlyvalidifregressioncontainsinterceptMultipleRegressionAnalysis:QualitativeInformationDummyvariabletrapThismodelEstimatedwageequationwithinterceptshiftDoesthatmeanthatwomenarediscriminatedagainst?Notnecessarily.Beingfemalemaybecorrelatedwithotherproduc-tivitycharacteristicsthathavenotbeencontrolledfor.Holdingeducation,experience,andtenurefixed,womenearn1.81$lessperhourthanmenMultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiComparingmeansofsubpopulationsdescribedbydummiesDiscussionItcaneasilybetestedwhetherdifferenceinmeansissignificantThewagedifferencebetweenmenandwomenislargerifnootherthingsarecontrolledfor;i.e.partofthedifferenceisduetodiffer-encesineducation,experienceandtenurebetweenmenandwomenNotholdingotherfactorsconstant,womenearn2.51$perhourlessthanmen,i.e.thedifferencebetweenthemeanwageofmenandthatofwomenis2.51$.MultipleRegressionAnalysis:QualitativeInformationComparingmeansofsubpopulatiFurtherexample:EffectsoftraininggrantsonhoursoftrainingThisisanexampleofprogramevaluationTreatmentgroup(=grantreceivers)vs.controlgroup(=nogrant)Istheeffectoftreatmentontheoutcomeofinterestcausal?HourstrainingperemployeeDummyindicatingwhetherfirmreceivedtraininggrantMultipleRegressionAnalysis:QualitativeInformationFurtherexample:EffectsoftrUsingdummyexplanatoryvariablesinequationsforlog(y)DummyindicatingwhetherhouseisofcolonialstyleAsthedummyforcolonialstylechangesfrom0to1,thehousepriceincreasesby5.4percentagepointsMultipleRegressionAnalysis:QualitativeInformationUsingdummyexplanatoryvariabHoldingotherthingsfixed,marriedwomenearn19.8%lessthansinglemen(=thebasecategory)Usingdummyvariablesformultiplecategories1)Definemembershipineachcategorybyadummyvariable2)Leaveoutonecategory(whichbecomesthebasecategory)MultipleRegressionAnalysis:QualitativeInformationHoldingotherthingsfixed,maIncorporatingordinalinformationusingdummyvariablesExample:CitycreditratingsandmunicipalbondinterestratesMunicipalbondrateCreditratingfrom0-4(0=worst,4=best)Thisspecificationwouldprobablynotbeappropriateasthecreditratingonlycontainsordinalinformation.Abetterwaytoincorporatethisinformationistodefinedummies:Dummiesindicatingwhethertheparticularratingapplies,e.g.CR1=1ifCR=1andCR1=0otherwise.Alleffectsaremeasuredincomparisontotheworstrating(=basecategory).MultipleRegressionAnalysis:QualitativeInformationIncorporatingordinalinformatInteractionsinvolvingdummyvariablesAllowingfordifferentslopesInterestinghypotheses=interceptmen=interceptwomen=slopemen=slopewomenInteractiontermThereturntoeducationisthesameformenandwomenThewholewageequationisthesameformenandwomenMultipleRegressionAnalysis:QualitativeInformationInteractionsinvolvingdummyvGraphicalillustrationInteractingboththeinterceptandtheslopewiththefemaledummyenablesonetomodelcompletelyindependentwageequationsformenandwomenMultipleRegressionAnalysis:QualitativeInformationGraphicalillustrationInteractEstimatedwageequationwithinteractiontermNoevidenceagainsthypothesisthatthereturntoeducationisthesameformenandwomenDoesthismeanthatthereisnosignificantevidenceoflowerpayforwomenatthesamelevelsofeduc,exper,andtenure?No:thisisonlytheeffectforeduc=0.Toanswerthequestiononehastorecentertheinteractionterm,e.g.aroundeduc=12.5(=averageeducation).MultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiTestingfordifferencesinregressionfunctionsacrossgroupsUnrestrictedmodel(containsfullsetofinteractions)Restrictedmodel(sameregressionforbothgroups)CollegegradepointaverageStandardizedaptitudetestscoreHighschoolrankpercentileTotalhoursspentincollegecoursesMultipleRegressionAnalysis:QualitativeInformationTestingfordifferencesinregNullhypothesisEstimationoftheunrestrictedmodelAllinteractioneffectsarezero,i.e.thesameregressioncoefficientsapplytomenandwomenTestedindividually,thehypothesisthattheinteractioneffectsarezerocannotberejectedMultipleRegressionAnalysis:QualitativeInformationNullhypothesisAllinteractionJointtestwithF-statisticAlternativewaytocomputeF-statisticinthegivencaseRunseparateregressionsformenandforwomen;theunrestrictedSSRisgivenbythesumoftheSSRofthesetworegressionsRunregressionfortherestrictedmodelandstoreSSRIfthetestiscomputedinthiswayitiscalledtheChow-TestImportant:TestassumesaconstanterrorvarianceaccrossgroupsNullhypothesisisrejectedMultipleRegressionAnalysis:QualitativeInformationJointtestwithF-statisticNulABinarydependentvariable:thelinearprobabilitymodelLinearregressionwhenthedependentvariableisbinaryLinearprobabilitymodel(LPM)Ifthedependentvariableonlytakesonthevalues1and0Inthelinearprobabilitymodel,thecoefficientsdescribetheeffectoftheexplanatoryvariablesontheprobabilitythaty=1MultipleRegressionAnalysis:QualitativeInformationABinarydependentvariable:tDoesnotlooksignificant(butseebelow)Example:Laborforceparticipationofmarriedwomen=1ifinlaborforce,=0otherwiseNon-wifeincome(inthousanddollarsperyear)Ifthenumberofkidsundersixyearsincreasesbyone,thepro-probabilitythatthewomanworksfallsby26.2%MultipleRegressionAnalysis:QualitativeInformationDoesnotlooksignificant(butExample:Femalelaborparticipationofmarriedwomen(cont.)Graphfornwifeinc=50,exper=5,age=30,kindslt6=1,kidsge6=0Negativepredictedprobabilitybutnoproblembecausenowomaninthesamplehaseduc<5.Themaximumlevelofeducationinthesampleiseduc=17.Forthegi-vencase,thisleadstoapredictedprobabilitytobeinthelaborforceofabout50%.MultipleRegressionAnalysis:QualitativeInformationExample:FemalelaborparticipDisadvantagesofthelinearprobabilitymodelPredictedprobabilitiesmaybelargerthanoneorsmallerthanzeroMarginalprobabilityeffectssometimeslogicallyimpossibleThelinearprobabilitymodelisnecessarilyheteroskedasticHeterosceasticityconsistentstandarderrorsneedtobecomputedAdvantangesofthelinearprobabilitymodelEasyestimationandinterpretationEstimatedeffectsandpredictionsoftenreasonablygoodinpracticeVarianceofBer-noullivariableMultipleRegressionAnalysis:QualitativeInformationDisadvantagesofthelinearprMoreonpolicyanalysisandprogramevaluationExample:EffectofjobtraininggrantsonworkerproductivityPercentageofdefectiveitems=1iffirmreceivedtraininggrant,=0otherwiseNoapparenteffectofgrantonproductivityTreatmentgroup:grantreveivers,Controlgroup:firmsthatreceivednograntGrantsweregivenonafirst-come,first-servedbasis.Thisisnotthesameasgivingthemoutrandomly.Itmightbethecasethatfirmswithlessproductiveworkerssawanopportunitytoimproveproductivityandappliedfirst.MultipleRegressionAnalysis:QualitativeInformationMoreonpolicyanalysisandprSelf-selectionintotreatmentasasourceforendogeneityInthegivenandinrelatedexamples,thetreatmentstatusisprobablyrelatedtoothercharacteristicsthatalsoinfluencetheoutcomeThereasonisthatsubjectsself-selectthemselvesintotreatmentdependingontheirindividualcharacteristicsandprospectsExperimentalevaluationInexperiments,assignmenttotreatmentisrandomInthiscase,causaleffectscanbeinferredusingasimpleregressionThedummyindicatingwhetherornottherewastreatmentisunrelatedtootherfactorsaffectingtheoutcome.MultipleRegressionAnalysis:QualitativeInformationSelf-selectionintotreatmentFurtherexampleofanendogenuousdummyregressorArenonwhitecustomersdiscriminatedagainst?Itisimportanttocontrolforothercharacteristicsthatmaybeimportantforloanapproval(fession,unemployment)Omittingimportantcharacteristicsthatarecorrelatedwiththenon-whitedummywillproducespuriousevidencefordiscriminiationDummyindicatingwhetherloanwasapprovedRacedummyCreditratingMultipleRegressionAnalysis:QualitativeInformationFurtherexampleofanendogenuChapter7
MultipleRegressionAnalysiswithQualitativeInformationWooldridge:IntroductoryEconometrics:AModernApproach,5eChapter7MultipleRegressionQualitativeInformationExamples:gender,race,industry,region,ratinggrade,…AwaytoincorporatequalitativeinformationistousedummyvariablesTheymayappearasthedependentorasindependentvariablesAsingledummyindependentvariableDummyvariable:=1ifthepersonisawoman=0ifthepersonisman=thewagegain/lossifthepersonisawomanratherthanaman(holdingotherthingsfixed)MultipleRegressionAnalysis:QualitativeInformationQualitativeInformationDummyvGraphicalIllustrationAlternativeinterpretationofcoefficient:i.e.thedifferenceinmeanwagebetweenmenandwomenwiththesamelevelofeducation.InterceptshiftMultipleRegressionAnalysis:QualitativeInformationGraphicalIllustrationAlternatDummyvariabletrapThismodelcannotbeestimated(perfectcollinearity)Whenusingdummyvariables,onecategoryalwayshastobeomitted:Alternatively,onecouldomittheintercept:ThebasecategoryaremenThebasecategoryarewomenDisadvantages:
1)Moredifficulttotestfordiffe-rencesbetweentheparameters2)R-squaredformulaonlyvalidifregressioncontainsinterceptMultipleRegressionAnalysis:QualitativeInformationDummyvariabletrapThismodelEstimatedwageequationwithinterceptshiftDoesthatmeanthatwomenarediscriminatedagainst?Notnecessarily.Beingfemalemaybecorrelatedwithotherproduc-tivitycharacteristicsthathavenotbeencontrolledfor.Holdingeducation,experience,andtenurefixed,womenearn1.81$lessperhourthanmenMultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiComparingmeansofsubpopulationsdescribedbydummiesDiscussionItcaneasilybetestedwhetherdifferenceinmeansissignificantThewagedifferencebetweenmenandwomenislargerifnootherthingsarecontrolledfor;i.e.partofthedifferenceisduetodiffer-encesineducation,experienceandtenurebetweenmenandwomenNotholdingotherfactorsconstant,womenearn2.51$perhourlessthanmen,i.e.thedifferencebetweenthemeanwageofmenandthatofwomenis2.51$.MultipleRegressionAnalysis:QualitativeInformationComparingmeansofsubpopulatiFurtherexample:EffectsoftraininggrantsonhoursoftrainingThisisanexampleofprogramevaluationTreatmentgroup(=grantreceivers)vs.controlgroup(=nogrant)Istheeffectoftreatmentontheoutcomeofinterestcausal?HourstrainingperemployeeDummyindicatingwhetherfirmreceivedtraininggrantMultipleRegressionAnalysis:QualitativeInformationFurtherexample:EffectsoftrUsingdummyexplanatoryvariablesinequationsforlog(y)DummyindicatingwhetherhouseisofcolonialstyleAsthedummyforcolonialstylechangesfrom0to1,thehousepriceincreasesby5.4percentagepointsMultipleRegressionAnalysis:QualitativeInformationUsingdummyexplanatoryvariabHoldingotherthingsfixed,marriedwomenearn19.8%lessthansinglemen(=thebasecategory)Usingdummyvariablesformultiplecategories1)Definemembershipineachcategorybyadummyvariable2)Leaveoutonecategory(whichbecomesthebasecategory)MultipleRegressionAnalysis:QualitativeInformationHoldingotherthingsfixed,maIncorporatingordinalinformationusingdummyvariablesExample:CitycreditratingsandmunicipalbondinterestratesMunicipalbondrateCreditratingfrom0-4(0=worst,4=best)Thisspecificationwouldprobablynotbeappropriateasthecreditratingonlycontainsordinalinformation.Abetterwaytoincorporatethisinformationistodefinedummies:Dummiesindicatingwhethertheparticularratingapplies,e.g.CR1=1ifCR=1andCR1=0otherwise.Alleffectsaremeasuredincomparisontotheworstrating(=basecategory).MultipleRegressionAnalysis:QualitativeInformationIncorporatingordinalinformatInteractionsinvolvingdummyvariablesAllowingfordifferentslopesInterestinghypotheses=interceptmen=interceptwomen=slopemen=slopewomenInteractiontermThereturntoeducationisthesameformenandwomenThewholewageequationisthesameformenandwomenMultipleRegressionAnalysis:QualitativeInformationInteractionsinvolvingdummyvGraphicalillustrationInteractingboththeinterceptandtheslopewiththefemaledummyenablesonetomodelcompletelyindependentwageequationsformenandwomenMultipleRegressionAnalysis:QualitativeInformationGraphicalillustrationInteractEstimatedwageequationwithinteractiontermNoevidenceagainsthypothesisthatthereturntoeducationisthesameformenandwomenDoesthismeanthatthereisnosignificantevidenceoflowerpayforwomenatthesamelevelsofeduc,exper,andtenure?No:thisisonlytheeffectforeduc=0.Toanswerthequestiononehastorecentertheinteractionterm,e.g.aroundeduc=12.5(=averageeducation).MultipleRegressionAnalysis:QualitativeInformationEstimatedwageequationwithiTestingfordifferencesinregressionfunctionsacrossgroupsUnrestrictedmodel(containsfullsetofinteractions)Restrictedmodel(sameregressionforbothgroups)CollegegradepointaverageStandardizedaptitudetestscoreHighschoolrankpercentileTotalhoursspentincollegecoursesMultipleRegressionAnalysis:QualitativeInformationTestingfordifferencesinregNullhypothesisEstimationoftheunrestrictedmodelAllinteractioneffectsarezero,i.e.thesameregressioncoefficientsapplytomenandwomenTestedindividually,thehypothesisthattheinteractioneffectsarezerocannotberejectedMultipleRegressionAnalysis:QualitativeInformationNullhypothesisAllinteractionJointtestwithF-statisticAlternativewaytocomputeF-statisticinthegivencaseRunseparateregressionsformenandforwomen;theunrestrictedSSRisgivenbythesumoftheSSRofthesetworegressionsRunregressionfortherestrictedmodelandstoreSSRIfthetestiscomputedinthiswayitiscalledtheChow-TestImportant:TestassumesaconstanterrorvarianceaccrossgroupsNullhypothesisisrejectedMultipleRegressionAnalysis:QualitativeInformationJointtestwithF-statisticNulABinarydependentvariable:thelinearprobabilitymodelLinearregressionwhenthedependentvariableisbinaryLinearprobabilitymodel(LPM)Ifthedependentvariableonlytakesonthevalues1and0Inthelinearprobabilitymodel,thecoefficientsdescribetheeffectoftheexplanatoryvariablesontheprobabilitythaty=1MultipleRegressionAnalysis:QualitativeInformationABinarydependentvariable:tDoesnotlooksignificant(butseebelow)Example:Laborforceparticipationofmarriedwomen=1ifinlaborforce,=0otherwiseNon-wifeincome(inthousanddollarsperyear)Ifthenumberofkidsundersixyearsincreasesbyone,thepro-probabilitythatthewomanworksfallsby26.2%MultipleRegressionAnalysis:QualitativeInformationDoesnotlooksignificant(butExample:Femalelaborparticipationofmarriedwomen(cont.)Graphfornwifeinc=50,exper=5,age=30,kindslt6=1,kidsge6=0Negativepredictedprobabilitybutnoproblembecausenowomaninthesamplehaseduc<5.Themaximumlevelofeducationinthesampleiseduc=17.Forthegi-vencase,thisleadstoapredictedprobabilitytobeinthelaborforceofabout50%.MultipleRegressionAnalysis:QualitativeInformationExample:FemalelaborparticipDisadvantagesofthelinearprobabilitymodelPredictedprobabilitiesmaybelargerthanoneorsmallerthanzeroMarginalprobabilityeffectssometimeslogicallyimpossibleThelinearprobabilitymodelisnecessarilyheteroskedasticHeterosceasticityconsistentstandarderrorsneedtobecomputedAdvantangesofthelinearprobabilitymodelEasyestimationan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年栓剂机械项目发展计划
- 二零二五年度农业基础设施建设合同解除及后续维护合同
- 二零二五年度股权投资合作框架协议:房地产投资合作框架协议
- 二零二五年度劳动合同解除与员工安置合同模板
- 二零二五年度住宅小区车位租赁及智慧停车服务合作协议
- 机关办公室副主任个人工作计划1
- 2025年度租赁合同租金调整补充协议
- 二零二五年度心理咨询机构心理咨询师培养合作协议
- 二零二五年度股东经营协议书:新能源汽车动力电池回收利用合作协议
- 二零二五年度电子产品价格保密及市场分析合同
- 2024年湖南环境生物职业技术学院单招职业适应性测试题库及参考答案
- 专题06 压强计算(压强与浮力结合题)-上海市2024年中考复习资料汇编(培优专用)【解析版】
- 语法选择10篇(名校模拟)-2024年中考英语逆袭冲刺名校模拟真题速递(广州专用)
- 2024年辅警招聘考试试题库含完整答案(各地真题)
- MOOC 中国文化概论-武汉大学 中国大学慕课答案
- 高三心理健康辅导讲座省公开课一等奖全国示范课微课金奖
- 《工程建设标准强制性条文电力工程部分2023年版》
- 壶口瀑布公开课省公开课一等奖全国示范课微课金奖课件
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- 2024年度年福建省考评员考试题库附答案(基础题)
- 中医中药在罕见病中的应用
评论
0/150
提交评论