传感器与电子测量:1测量误差评价1_第1页
传感器与电子测量:1测量误差评价1_第2页
传感器与电子测量:1测量误差评价1_第3页
传感器与电子测量:1测量误差评价1_第4页
传感器与电子测量:1测量误差评价1_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本课程的内容几何量的电子测量技术几何量:长度角度面积体积电子测量:传感器电子测量原理测量可靠性本课程的意义生产力进步的直接动力是生产工具,代表生产力水平的要素也是生产工具。测绘技术的每一次革命实际都是由测量仪器技术所直接推动,一部现代测绘技术的发展史很大程度上是一部现代测绘仪器科技的发展历史。本课程的意义仪器的原理性突破大大降低了测绘劳动强度,大大提高了成果可靠性,甚至使测绘思维方法产生了实质的变化。

早期的测绘是以三角测量和模拟水准为基本作业模式,使用的都是模拟式仪器,工作量大,数据处理量大,效率低,精度低,劳动强度大。上世纪60年代的电磁波测距技术实现了距离的毫米级测量,导线测量作业模式成为目前主要的测绘作业模式---现代测绘技术的第一次革命。本课程的意义电子测角技术的突破实现了角度测量的数字化,诞生了电子经纬仪,进而和电子测距仪结合实现了全站仪。电子计算机技术大大提高了测绘的数据处理效率,测绘数据处理这个曾经耗费大量劳动力的工作变得简便易行---现代测绘技术的第二次革命。本课程的意义以电子条码影象测量技术为支撑的电子水准自动读数技术的突破,使得水准测量也实现了数字化。以电磁波测距技术为支撑的GPS定位技术实现了大跨度基线的直接测量,再次提高了测量效率---现代测绘技术的第三次革命。本课程的意义电子测量技术给测绘学带来了机遇的同时也带来了挑战当测绘生产作业变得日益简便的时候,我们对测量师的素质要求能降低吗?当各类新型电子化、数字化甚至智能化、自动化的测绘仪器日益普及的时候,测绘学的科学研究方向是什么?本课程的目标建立大视角的测量思维理解目前常用的几类电子测绘仪器的基本工作原理理解几类电子测绘仪器的常用功能理解几类电子测绘仪器的原理误差形成机理及其规律理解和掌握几类电子测绘仪器的主要原理误差检验和校正方法通过本课程的学习,我们将会以更宽的视角和更高的高度来理解测量的真正涵义。真正理解测绘规范,启发新思维。同时我们还可能发现传统理论中甚至存在着过于僵化和不合适宜的东西。第一章测量误差评价引言测量学理论的现状误差分类认识论的误区新概念测量理论1.1引言人类的工业文明恰恰就是给物理量赋予数量开始的。给物理量赋予数值的过程就是测量。与物理量的定义相一致的值就是真值。真值是未知值1、物理量的实际值是客观唯一的,主观给出的实际都是测量结果。【例】圆周率的真值---3.1415926…..2、并不排除测量结果和某个物理量的真值有正好碰巧完全绝对相等的时候,但这种情形即使出现了我们主观却不可能知道。3、如果真值都已经确定知道,那就不需要再去测量了。测量结果是通过测量最终提交的表达被测物理量大小程度的数值。观测值是指由传感器直接读取的原始数值。观测值数据处理测量结果1、获得最佳测量结果的数据处理方法;误差即测量结果与真值之差,或观测值与其真值之差,或某测量结果(观测值)与某个参考量之差。误差也是未知值测量理论的二大任务2、测量结果与真值接近程度---误差大小的评价方法。所有测量,测量的目的都是为了追求最终测量结果的真实可靠。如何对测量结果的误差进行评价呢?测绘成果的质量用精度评价,那么电子测量呢?测量可靠性就是特指测量结果的真实性或测量结果与其真值的接近性。测量仪器的可靠性也就是仪器输出的测量结果的可靠性。测量可靠性问题的根源是因为测量总有误差测量可靠性评价就是对测量结果误差大小程度的评价测量可靠性评价的意义维护科学量制体系完整统一的手段,决定量值传递顺序的技术指标。原子钟时间光速长度速度加速度质量力功率功。。。测绘领域用精度来评价测量可靠性。单一测量结果没有多余观测,不能平差,不能统计精度,所以不能评价测量可靠性。这个说法对吗?答案:否!!!任何测量,最终提交的测量结果都是单一结果。正是单一测量结果与真值的接近程度才是测量可靠性评价需要研究的内容。麻烦是:真值未知,误差也未知。又有一种说法:测量可靠性评价只是计量学科的任务,跟我们测绘学、仪器学等学科没有什么直接关系。计量部门不是有用于仪器检验校准的真值吗?只要计量部门通过真值比对确保仪器都正常不就行了吗?答案还是:否!谁给计量部门提供真值?计量部门的真值又是从哪里得来的?计量检测领域以其他测量领域提供的“真值”或设备为基准,通过测量,提交测量仪器的误差的测量结果。和其他测量领域提交某个物理量的测量结果是一回事。计量部门的“真值”实际是测量结果!譬如:给光电测距仪做计量检验的基线值一个完全独立的计量学科是根本不存在的,所有测量学科事实上都是计量活动的直接参与者。真值也是由测量而得来,是一个可靠度更高的测量结果而已。那么,如何在没有绝对真值的情况下评价测量结果的真实可靠度呢?如何评价测绘部门提供的长度基线的可靠度呢?为什么要用基线场检验测距仪而不能用测距仪检验基线场呢?各种各样的不同可靠性等级的真值的排序依据又是什么呢?究竟应该以什么指标作为衡量测量可靠性的依据呢?可见,计量的本质还是测量。在测量追求真值的核心价值下,所有测量学科本来就是一个整体。测量可靠性评价当然应该是一个统一的理论。小结1、测量可靠性评价就是对测量结果真实性的评价,就是对结果误差的大小的评价。2、测量可靠性评价最主要任务是维护科学量制体系完整统一。3、计量学用于仪器校验的许多所谓真值其实也是通过测量而得到的,甚至就是测绘、仪器行业提供的。4、一个独立的计量学科是不存在的,所有测量学科包括测绘、仪器等都是计量学科的组成份子。5、测量学理论应该是一个统一的理论。1.2测量学理论的现状在当前的测量理论中,实际同时存在着三种不同逻辑思维的学派,它们甚至是互相矛盾的。误差分类系统误差随机误差准确度trueness精度precision精确度accuracy(a)误差分类系统误差随机误差粗差改正精度precision=精确度accuracy剔除(b)误差分类已定系统误差未定系统误差随机误差改正不确定度(uncertainty)(c)三种不同思维的概念逻辑第一流派正因为精度和准确度不能合成,精确度包含精度和准确度双重概念,所以《国际通用计量学基本术语(VIM)》、《通用计量术语及定义》从来都特别强调精确度是定性概念。“Theconcept‘measurementaccuracy’isnotaquantityandisnotgivenanumericalquantityvalue.Ameasurementissaidtobemoreaccuratewhenitoffersasmallermeasurementerror.”误差分类系统误差随机误差准确度trueness精度precision精确度accuracy第一流派的根本观点是测量可靠性只能定性评价而不能定量评价。测量的精密性和准确性分别评价随机误差和系统误差。【例】水准测量的一等、二等、三等、四等,导线测量的一级、二级、三级、图根,水准仪的DS05、DS1、DS3,经纬仪的J07、J1、J2、J6,等等,概念逻辑困扰【例】数显卡尺的分辨误差被认为是随机误差。实际测量时它并不导致重复观测值发散。即,这个随机误差并没有影响精密度!【例】在测绘领域,水准仪的诸多原理误差如i角误差、交叉误差、补偿非线性误差等,都被归类为有规律的系统误差,但却都影响水准网的精密度。【例】光电测距仪的加乘常数误差被看作是系统误差。但在计量检验中,加乘常数的检测结果恰恰就是从离散的误差样本序列中分离出来的。系统误差被分离出来后,残差的离散度就变小了。这一事实恰恰证明:系统误差事实上贡献了发散!全站仪测距加乘常数误差、轴系误差等也影响导线网的精度而不是准确度。为解决这些逻辑麻烦,也曾经有学者提出误差类别可以相互转换的“理论”。但是,却从来没有人承认准确度和精度可以相互转换,实际上也没有人能够解释“遵循随机分布”和“不遵循随机分布”如何相互转换、确定规律和随机规律如何相互转换。这种“理论”显然没有逻辑性。【例】被测电压中的噪声,当采用多路AD转换器同步并行采样获得重复观测值序列时,噪声误差也是产生系统性影响---随机误差产生了系统性影响。第二流派仍然承认误差有类别之分,所不同的是:系统误差的数值由计量校准领域给出,作为改正数用于改正测量结果。这样就只存在精度评价随机误差了,精度自然就等于精确度,精确度(accuracy)也就成了定量概念而不再是定性概念了。目前测绘领域就仍然按照这种思维逻辑解释测量误差理论。误差分类(测绘)系统误差随机误差粗差改正精度precision剔除=精确度accuracy【例】2005年中国测绘局给出的珠峰高程为8844.43米,精度±0.21米。仍然存在逻辑麻烦计量校准领域实际也不能给出系统误差的真值,实际并不具备技术能力上的绝对优势。计量校准部门给出误差数值的过程也是测量过程,和其他领域里的测量是一回事,其测量基准甚至还是其他测量领域所提供的测量结果或仪器设备。【例】我国计量部门用于检验测距仪的基线实际就是我国测绘部门测量完成的。既然所获得的系统误差值也只能是近似值,况且改正后的残差通常并不能忽略,那么残剩系统误差影响精度和随机误差不影响精度的逻辑矛盾仍然存在。加乘常数误差是系统误差,是仪器的准确度指标,应该规定限差。系统误差不影响精度,是可以改正的,大小误差都是一样的改正,限差没意义。而且,随机误差概念实际上也有麻烦。【例】前述珠峰高程案例中,系统误差被改正掉了,精度±0.21米被认为是对随机误差的评价。但是,测量结果8844.43米与真值之间实际是个偏差,根本就不是随机规律。【例】在中国,针对测距仪计量检定规程中是否应该给加乘常数误差规定限差的问题,二种学派一直争执不休。与第一学派之间存在矛盾。第三流派这一学派以论文[i]为代表。承认未定系统误差也遵循随机分布,也有方差,能够和随机误差合成。

[i].章渭基.偶然误差与系统误差的合成南京理工大学学报1980年第2期误差分类已定系统误差未定系统误差随机误差改正不确定度(uncertainty)但这一理论逻辑仍然欠缺说服力。未定系统误差遵循随机分布的理论解释?未定系统误差和随机误差的概念区别所在?自然,这种概念意义的不确定度概念也被第一第二流派所诟病[i]。

[i].Schmidt,H.WarumGUM?-KritischeAnmerkungenzurNormdefinitionder“Messunsicherheit”undzuverzerrten“Elementarfehlermodellen”[EB/OL].http://www.gia.rwth-aachen.de/Forschung/AngwStatistik/warum_gum/warum_gum_zfv.pdf系统误差的方差和随机误差的方差究竟是一样的还是不一样的呢???小结误差分类系统误差随机误差准确度trueness精度precision精确度accuracy(a)误差分类系统误差随机误差粗差改正精度precision=精确度accuracy剔除(b)误差分类已定系统误差未定系统误差随机误差改正不确定度(uncertainty)(c)三种不同思维的概念逻辑1.3误差分类认识论的误区误差分类主义哲学的核心观念:系统误差是偏差,不遵循随机分布。随机误差遵循随机分布,不是偏差。系统误差没有方差不能和随机误差合成。系统误差不影响精度。随机误差不影响准确度。但是!这些观念全都是错误的。前边所举的那些逻辑矛盾的案例就足以证明。接下来,我们再进一步剖析。1.3.1误差分类理论的哲学麻烦【例】测距仪乘常数误差R是测量领域公认的系统误差。时间的定义 原子钟

频率计

测距仪

距离测量

测距仪测距基准的溯源

测绘领域:测量误差----随机误差站在一批测量结果的角度,误差遵循随机分布。仪器的乘常数误差---系统误差测距仪生产厂:测距仪的乘常数误差(校正后的残差)---随机误差站在一批测距仪的角度,乘常数误差遵循随机分布。频率计的误差---系统误差频率计制造厂:频率计的误差---随机误差站在一批频率计的角度,频率计误差遵循随机分布。原子钟的误差---系统误差原子钟的制造厂:原子钟的误差---随机误差站在一批原子钟的角度,原子钟误差遵循随机分布。时间的定义 原子钟

频率计

测距仪

距离测量

测距仪测距基准的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论