江西省萍乡市莲花县2022-2023学年数学九上期末达标检测模拟试题含解析_第1页
江西省萍乡市莲花县2022-2023学年数学九上期末达标检测模拟试题含解析_第2页
江西省萍乡市莲花县2022-2023学年数学九上期末达标检测模拟试题含解析_第3页
江西省萍乡市莲花县2022-2023学年数学九上期末达标检测模拟试题含解析_第4页
江西省萍乡市莲花县2022-2023学年数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.将二次函数y=2x2-4x+4的图象向左平移2个单位,再向下平移1个单位后所得图象的函数解析式为()A.y=2(x+1)2+1 B.y=2(x+1)2+3 C.y=2(x-3)2+1 D.y=-2(x-3)2+32.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是()A. B. C. D.3.下列各点中,在函数y=-图象上的是()A.(﹣2,4) B.(2,4) C.(﹣2,﹣4) D.(8,1)4.如图,中,弦相交于点,连接,若,,则()A. B. C. D.5.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<26.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1) B.(﹣2,﹣1) C.(2,﹣1) D.(0,1)7.设抛物线的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1()A. B.C. D.(a为任意常数)8.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A. B. C. D.10.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A.20° B.30° C.40° D.35°11.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A. B. C.△ADE∽△ABC D.12.由二次函数可知()A.其图象的开口向下 B.其图象的对称轴为直线C.其顶点坐标为 D.当时,随的增大而增大二、填空题(每题4分,共24分)13.已知点A(3,y1)、B(2,y2)都在抛物线y=﹣(x+1)2+2上,则y1与y2的大小关系是_____.14.已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=________.(用单位向量表示)15.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为_____尺.16.如图,在中,点在边上,连接并延长交的延长线于点,若,则__________.17.如图,由四个全等的直角三角形围成的大正方形ABCD的面积为34,小正方形EFGH的面积为4,则tan∠DCG的值为_____.18.若△ABC∽△A′B′C′,且=,△ABC的周长为12cm,则△A′B′C′的周长为_______cm.三、解答题(共78分)19.(8分)某服装柜在销售中发现:进货价为每件元,销售价为每件元的某品牌服装平均每天可售出件,现商场决定采取适当的降价措施,扩大销售量,增加盈利,经市场调查发现:如果每件服装降价元,那么平均每天就可多售出件,要想平均每天销售这种服装盈利元,同时又要使顾客得到较多的实惠,那么每件服装应降价多少元?20.(8分)如图,△ABC中,AB=AC=10,BC=6,求sinB的值.21.(8分)如图是由相同的5个小正方体组成的几何体,请画出它的三种视图,若每个小正方体的棱长为a,试求出该几何体的表面积.22.(10分)为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.(1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.23.(10分)在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0).(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y轴方向平移若干个单位,所得抛物线的顶点为D,与y轴的交点为B,与x轴负半轴交于点A,过B作x轴的平行线交所得抛物线于点C,若AC∥BD,试求平移后所得抛物线的表达式.24.(10分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.请根据图表信息,解答下列问题:本次调查随机抽取了____名学生:表中;补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀"和“良好”等级的学生共有多少人25.(12分)如图,的直径垂直于弦,垂足为,为延长线上一点,且.(1)求证:为的切线;(2)若,,求的半径.26.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.

参考答案一、选择题(每题4分,共48分)1、A【分析】先配方成顶点式,再根据二次函数图象的平移规律“上加下减,左加右减”解答即可.【详解】由“上加下减,左加右减”的原则可知,将二次函数y=2x2-4x+4配方成的图象向左平移2个单位,再向下平移1个单位,得以新的抛物线的表达式是y=2(x+1)2+1,故选:A.【点睛】本题主要考查的是函数图象的平移,由y=ax2平移得到y=a(x-h)2+k,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式即可.2、C【分析】连接OM,作,交MF与点H,根据正六边性的性质可得出,,得出为等边三角形,再求OH即可.【详解】解:∵六边形是正六边形,∴∵点为劣弧的中点∴连接OM,作,交MF与点H∵为等边三角形∴FM=OM,∴故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.3、A【分析】所有在反比例函数上的点的横纵坐标的积应等于比例系数.本题只需把所给点的横纵坐标相乘,结果是﹣8的,就在此函数图象上【详解】解:-2×4=-8故选:A【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数性质是本题的解题关键.4、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可.【详解】解:∵,,∴又∵,,,故选:.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5、C【分析】一次函数y1=kx+b落在与反比例函数y1=图像上方的部分对应的自变量的取值范围即为不等式的解集.【详解】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y1=(c是常数,且c≠0)的图象相交于A(﹣3,﹣1),B(1,m)两点,∴不等式y1>y1的解集是﹣3<x<0或x>1.故答案为C.【点睛】本题考查了一次函数、反比例函数图像与不等式的关系,从函数图像确定不等式的解集是解答本题的关键.6、C【解析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.7、D【分析】求出各选项中M、N两点的坐标,再求面积S,进行判断即可;【详解】A选项中,M点坐标为(1,1),N点坐标为(0,-2),,故A选项不满足;B选项中,M点坐标为,N点坐标为(0,),,故B选项不满足;C选项中,M点坐标为(2,),点N坐标为(0,1),,故选项C不满足;D选项中,M点坐标为(,),点N坐标为(0,2),,当a=1时,S=1,故选项D满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.8、D【分析】根据轴对称图形、中心对称图形的定义即可判断.【详解】A、是轴对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,故符合题意.故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9、A【分析】根据概率公式解答即可.【详解】袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率为:.故选A.【点睛】本题考查了随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、A【解析】∵∠A=35°,∴∠COB=70°,∴∠D=90°-∠COB=20°.故选A.11、D【解析】∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三个选项中的结论正确,D选项中结论错误.故选D.12、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D:当x<4时,y随x的增大而减小,故D错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.二、填空题(每题4分,共24分)13、y1<y1【分析】先求得函数的对称轴为,再判断、在对称轴右侧,从而判断出与的大小关系.【详解】∵函数y=﹣(x+1)1+1的对称轴为,∴、在对称轴右侧,∵抛物线开口向下,在对称轴右侧y随x的增大而减小,且3>1,∴y1<y1.故答案为:y1<y1.【点睛】本题考查了待定系数法二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出答案是解题关键.14、【解析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,故答案为:.15、3【分析】根据同一时刻物高与影长成正比可得出结论.【详解】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=2.5尺,∴,解得x=3(尺).故答案为:3.【点睛】本题考查的是同一时刻物高与影长成正比,在解题时注意单位要统一.16、【分析】根据相似三角形的判定与性质、平行四边形的性质,进而证明,得出线段的比例,即可得出答案【详解】在中,∴AD∥BC,∠DAE=∠CFE,∠ADE=∠FCE,∴△ADE∽△FCE∵DE=2EC,∴AD=2CF,在中,∵AD=BC,等量代换得:BC=2CF∴2:1【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,数形结合是解题的关键.17、【分析】根据大正方形的面积为,小正方形的面积为即可得到,,再根据勾股定理,即可得到,进而求得的值.【详解】由题意可知:大正方形的面积为,小正方形的面积为,四个直角三角形全等,设,则由勾股定理可得:在中,解之得:在中,故答案为【点睛】本题主要考查了勾股定理以及解直角三角形的应用,明确锐角三角函数的边角对应关系,设未知数利用勾股定理是解题关键.18、16cm【解析】∵△ABC∽△A′B′C′,,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.三、解答题(共78分)19、每件童装应降价元.【分析】设每件服装应降价x元,根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去.【详解】设每件服装应降价x元,由题意,得,解得,,为使顾客得到较多的实惠,应取x=1.故每件服装应降价1元.20、【分析】过点A作于D,根据等腰三角形的三线合一性质求出根据勾股定理求出,最后用正弦的定义即可.【详解】解:过点A作于D,又∵△ABC中,AB=AC=10,BC=6,∴,.∴.【点睛】本题考查了等腰三角形的三线合一性质、勾股定理、锐角三角函数的定义,构造直角三角形是解题的关键.21、图形见解析;20a2.【解析】试题分析:分别利用三视图的观察角度不同进而得出其三视图,底层有四个小正方体,上层有一个小正方体,其中看不到的面有10个,可以根据不同的方法来求表面积.试题解析:该几何体的三种视图如图所示;,或【点睛】本题考查了简单组合体的三视图和表面积,解题的关键是明确三视图要从不同的方向看,求表面积时的关键是要结合图形确定重叠的部分.22、(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a的值为1【分析】(1)设该社区九月份购买甲、乙两种绿色植物分别为x,y盆,根据甲、乙两种绿色植物共1100盆和共花费了27000元列二元一次方程组即可;(2)结合(1)根据题意列出关于a的方程,用换元法,设,化简方程,求解即可.【详解】解:(1)设该社区九月份购买甲、乙两种绿色植物分别为x,y盆,由题意知,,解得,,答:该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)由题意知,,令,原式可化为,解得,(舍去),,∴,∴a的值为1.【点睛】本题考查了二元一次方程组和一元二次方程在实际问题中的应用,根据题意正确列式是解题的关键.23、(1)y=﹣x2+2x+8,其顶点为(1,9)(2)y=﹣x2+2x+3【分析】(1)根据对称轴为直线x=1的抛物线y=ax2+bx+8过点(﹣2,0),可得,解得即可求解,(2)设令平移后抛物线为,可得D(1,k),B(0,k-1),且,根据BC平行于x轴,可得点C与点B关于对称轴x=1对称,可得C(2,k-1),根据,解得,即.作DH⊥BC于H,CT⊥x轴于T,则在△DBH中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,解得k=4,即可求平移后的二次函数解析式.【详解】(1)由题意得:,解得:,所以抛物线的表达式为,其顶点为(1,9).(2)令平移后抛物线为,易得D(1,k),B(0,k-1),且,由BC平行于x轴,知点C与点B关于对称轴x=1对称,得C(2,k-1),由,解得(舍正),即.作DH⊥BC于H,CT⊥x轴于T,则在△DBH中,HB=HD=1,∠DHB=90°,又AC∥BD,得△CTA∽△DHB,所以CT=AT,即,解得k=4,所以平移后抛物线表达式为.24、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论