版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为()A. B. C. D.2.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.3.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()A. B. C. D.4.设全集集合,则()A. B. C. D.5.若,满足约束条件,则的最大值是()A. B. C.13 D.6.若函数在时取得极值,则()A. B. C. D.7.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是A. B. C. D.8.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.9.()A. B. C. D.10.若复数,其中为虚数单位,则下列结论正确的是()A.的虚部为 B. C.的共轭复数为 D.为纯虚数11.已知数列为等差数列,为其前项和,,则()A. B. C. D.12.在中,,,,点满足,则等于()A.10 B.9 C.8 D.7二、填空题:本题共4小题,每小题5分,共20分。13.设是等比数列的前项的和,成等差数列,则的值为_____.14.在棱长为6的正方体中,是的中点,点是面,所在平面内的动点,且满足,则三棱锥的体积的最大值是__________.15.若函数(R,)满足,且的最小值等于,则ω的值为___________.16.若函数的图像向左平移个单位得到函数的图像.则在区间上的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.18.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.19.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.20.(12分)已知圆M:及定点,点A是圆M上的动点,点B在上,点G在上,且满足,,点G的轨迹为曲线C.(1)求曲线C的方程;(2)设斜率为k的动直线l与曲线C有且只有一个公共点,与直线和分别交于P、Q两点.当时,求(O为坐标原点)面积的取值范围.21.(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)证明:
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】
试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.2.A【答案解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【答案点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.3.D【答案解析】
利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.【题目详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,,故选D.【答案点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.4.A【答案解析】
先求出,再与集合N求交集.【题目详解】由已知,,又,所以.故选:A.【答案点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.5.C【答案解析】
由已知画出可行域,利用目标函数的几何意义求最大值.【题目详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【答案点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.6.D【答案解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【题目详解】因为,所以,又函数在时取得极值,所以,解得.故选D【答案点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.7.D【答案解析】
由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示.若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.8.C【答案解析】
因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.9.A【答案解析】
分子分母同乘,即根据复数的除法法则求解即可.【题目详解】解:,故选:A【答案点睛】本题考查复数的除法运算,属于基础题.10.D【答案解析】
将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【答案点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.11.B【答案解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【题目详解】由等差数列的性质可得,.故选:B.【答案点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.12.D【答案解析】
利用已知条件,表示出向量,然后求解向量的数量积.【题目详解】在中,,,,点满足,可得则==【答案点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.二、填空题:本题共4小题,每小题5分,共20分。13.2【答案解析】
设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【题目详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:.【答案点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.14.【答案解析】
根据与相似,,过作于,利用体积公式求解OP最值,根据勾股定理得出,,利用函数单调性判断求解即可.【题目详解】∵在棱长为6的正方体中,是的中点,点是面所在平面内的动点,且满足,又,∴与相似∴,即,过作于,设,,∴,化简得:,,根据函数单调性判断,时,取得最大值36,,在正方体中平面.三棱锥体积的最大值为【答案点睛】本题考查三角形相似,几何体体积以及函数单调性的综合应用,难度一般.15.1【答案解析】
利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的距离为,进而求解即可.【题目详解】由题,,因为,,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,所以,即,所以,故答案为:1【答案点睛】本题考查正弦型函数的对称性的应用,考查三角函数的化简.16.【答案解析】
注意平移是针对自变量x,所以,再利用整体换元法求值域(最值)即可.【题目详解】由已知,,,又,故,,所以的最小值为.故答案为:.【答案点睛】本题考查正弦型函数在给定区间上的最值问题,涉及到图象的平移变换、辅助角公式的应用,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【答案解析】
(1)先证明EF平面,即可求证;(2)根据二面角的余弦值,可得平面,以为坐标原点,建立空间直角坐标系,利用向量计算线面角即可.【题目详解】(1)连接,交于点,连结.则,故面.又面,因此.(2)由(1)知即为二面角的平面角,且.在中应用余弦定理,得,于是有,即,从而有平面.以为坐标原点,建立如图所示的空间直角坐标系,则,于是,,设平面的法向量为,则,即,解得于是平面的一个法向量为.设直线与平面所成角为,因此.【答案点睛】本题主要考查了线面垂直,线线垂直的证明,二面角,线面角的向量求法,属于中档题.18.(1)详见解析;(2).【答案解析】
(1)连接,,则且为的中点,又∵为的中点,∴,又平面,平面,故平面.(2)由平面,得,.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,,,,,.取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为∵平面平面,∴解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是.19.(1);(2)【答案解析】
(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【题目详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.【答案点睛】本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.20.(1);(2).【答案解析】
(1)根据题意得到GB是线段的中垂线,从而为定值,根据椭圆定义可知点G的轨迹是以M,N为焦点的椭圆,即可求出曲线C的方程;(2)联立直线方程和椭圆方程,表示处的面积代入韦达定理化简即可求范围.【题目详解】(1)为的中点,且是线段的中垂线,,又,∴点G的轨迹是以M,N为焦点的椭圆,设椭圆方程为(),则,,,所以曲线C的方程为.(2)设直线l:(),由消去y,可得.因为直线l总与椭圆C有且只有一个公共点,所以,.①又由可得;同理可得.由原点O到直线的距离为和,可得.②将①代入②得,当时,,综上,面积的取值范围是.【答案点睛】此题考查了轨迹和直线与曲线相交问题,轨迹通过已知条件找到几何关系从而判断轨迹,直线与曲线相交一般联立设而不求韦达定理进行求解即可,属于一般性题目.21.【答案解析】
将圆和直线化成普通方程.再根据相切,圆心到直线的距离等于半径,列等式方程,解方程即可.【题目详解】解:将圆化成普通方程为,整理得.将直线化成普通方程为.因为相切,所以圆心到直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动漫综合知识竞赛考试题库及答案
- 2025年浙教版九年级历史上册月考试卷
- 智能水表技术研发合同(2篇)
- 权益转让协议书(2篇)
- 2025年人教版(2024)八年级历史下册月考试卷含答案
- 2025年新科版高三地理上册月考试卷含答案
- 2025年广州珠江职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年山西同文职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 2025年安徽工商职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年宁波职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2024-2025学年人教版三年级(上)英语寒假作业(九)
- 《招标投标法》考试题库200题(含答案)
- 河南退役军人专升本计算机真题答案
- DB52T 1167-2017 含笑属栽培技术规程 乐昌含笑
- 2025年全国高考体育单招考试政治模拟试卷试题(含答案详解)
- 驾驶证学法减分(学法免分)试题和答案(50题完整版)1650
- 人教版2024新版七年级上册数学第六章几何图形初步学业质量测试卷(含答案)
- 小学数学五年级上册奥数应用题100道(含答案)
- 村卫生室2023年度绩效考核评分细则(基本公共卫生服务)
- 7天减肥餐食谱给你最能瘦的一周减肥食谱
- 最新北师大版八年级数学下册教学课件全册
评论
0/150
提交评论