2022-2023学年河南省郑州市金水区实验中学数学八上期末监测模拟试题含解析_第1页
2022-2023学年河南省郑州市金水区实验中学数学八上期末监测模拟试题含解析_第2页
2022-2023学年河南省郑州市金水区实验中学数学八上期末监测模拟试题含解析_第3页
2022-2023学年河南省郑州市金水区实验中学数学八上期末监测模拟试题含解析_第4页
2022-2023学年河南省郑州市金水区实验中学数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.同一直角坐标系中,一次函数y=kx+b的图象如图所示,则满足y≥0的x取值范围是()A.x≤-2 B.x≥-2 C.x<-2 D.x>-22.函数与的图象相交于点则点的坐标是()A. B. C. D.3.如图,小明从地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°⋯⋯,照这样走下去,他第一次回到出发地地时,一共走的路程是()A.200米 B.250米 C.300米 D.350米4.如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.125.已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C′全等的是()A.AB=A′B′,AC=A′C′,BC=B′C′ B.∠A=∠A′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′,∠A=∠A′ D.AB=A′B′,BC=B′C′,∠C=∠C′6.在实数0,﹣,π,|﹣3|中,最小的数是()A.0 B.﹣ C.π D.|﹣3|7.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为().A.49 B.25 C.13 D.18.如图,在△ABC中,AB=AC,BC=5,AB=11,AB的垂直平分线DE交AB于点E,交AC于点D,则△BCD的周长是()A.16 B.6 C.27 D.189.下列运算正确的是().A.(-a)1.(-a)3=a6 B.(a1)3a6=a11C.a10÷a1=a5 D.a1+a3=a510.下列各式中,能运用“平方差公式”进行因式分解的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,△ABC的三个顶点均在5×4的正方形网格的格点上,点M也在格点上(不与B重合),则使△ACM与△ABC全等的点M共有__________个.12.如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B,最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为_____米.13.如图,直线y=x+1与直线y=mx-n相交于点M(1,b),则关于x,y的方程组的解为:________.

14.若是方程的一个解,则______.15.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.16.如图,中,,,,、分别是、上的动点,则的最小值为______.17.满足的整数的和是__________.18.若有意义,则___________.三、解答题(共66分)19.(10分)甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:(1)甲车的速度是千米/时,乙车的速度是千米/时;(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.20.(6分)已知:如图,中,,中线和交于点.(1)求证:是等腰三角形;(2连接,试判断直线与线段的关系,并说明理由.21.(6分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形22.(8分)如图,设图中每个小正方形的边长为1,(1)请画出△ABC关于y轴对称图形△A′B′C′,其中ABC的对称点分别为A′B′C′;(2)直接写出A′、B′、C′的坐标.23.(8分)已知在平面直角坐标系中的位置如图所示.(1)画出关于轴对称的;(2)每个小方格都是边长为1个单位的正方形,求多边形的面积.24.(8分)小明在作业本上写了一个代数式的正确演算结果,但不小心被墨水污染了一部分,形式如下:求被墨水污染部分“”化简后的结果;原代数式的值能等于吗?并说明理由.25.(10分)如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.26.(10分)如图,台风过后,旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆在离地面6米处折断,请你求出旗杆原来的高度?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据图象找到一次函数图象在x轴上方时x的取值范围.【详解】解:表示一次函数在x轴上方时,x的取值范围,根据图象可得:.故选:A.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用函数图象解不等式的方法.2、A【分析】把两个函数解析式联立,解方程组,方程组的解是交点的坐标.【详解】解:由题意得:解得:把代入②得:所以交点坐标是.故选A.【点睛】本题考查的是函数的交点坐标问题,解题的关键是转化为方程组问题.3、C【分析】由题意可知小明所走的路线为一个正多边形,根据多边形的外角和进行分析即可求出答案.【详解】解:正多边形的边数为:360°÷18°=20,∴路程为:15×20=300(米).故选:C.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.4、A【详解】∵30°的角所对的直角边等于斜边的一半,,故选A.5、D【解析】根据全等三角形的判定方法对各项逐一判断即得答案.【详解】解:A、AB=A′B′,AC=A′C′,BC=B′C′,根据SSS可判定△ABC和△A′B′C′全等,本选项不符合题意;B、∠A=∠A′,∠B=∠B′,AC=A′C′,根据AAS可判定△ABC和△A′B′C′全等,本选项不符合题意;C、AB=A′B′,AC=A′C′,∠A=∠A′,根据SAS可判定△ABC和△A′B′C′全等,本选项不符合题意;D、AB=A′B′,BC=B′C′,∠C=∠C′,这是SSA,不能判定△ABC和△A′B′C′全等,本选项符合题意.故选:D.【点睛】本题考查了全等三角形的判定,属于应知应会题型,熟练掌握全等三角形的判定方法是解题关键.6、B【分析】根据1大于一切负数;正数大于1解答即可.【详解】解:∵|﹣3|=3,∴实数1,﹣,π,|﹣3|按照从小到大排列是:﹣<1<|﹣3|<π,∴最小的数是﹣,故选:B.【点睛】本题考查实数的大小比较;解答时注意用1大于一切负数;正数大于1.7、A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a2+b2=25,四个三角形的面积=4×ab=25-1=24,∴2ab=24,联立解得:(a+b)2=25+24=1.故选A.8、A【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后求出△BCD的周长=AC+BC,代入数据计算即可得解.【详解】解:∵DE是AB的垂直平分线,∴AD=BD,∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵AB=11,∴AC=AB=11,∴△BDC的周长=11+5=16,故选:A.【点睛】本题考查了垂直平分线的性质,熟练掌握性质和准确识图是解题的关键.9、B【分析】根据同类项的定义,幂的乘方,同底数的幂的乘法与除法法则即可作出判断.【详解】解:A.(-a)1.(-a)3=-a5,,故选项错误;

B.正确;

C.a10÷a1=a8,故选项错误;

D.不是同类项,不能合并,故选项错误.故选:B.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,理解法则是基础.10、B【分析】根据平方差公式的特点:①两项式;②两个数的平方差,对每个选项进行判断即可.【详解】A.,提公因式进行因式分解,故A选项不符合题意B.,利用平方差公式进行因式分解,故B选项符合题意C.=(x-2),运用完全平方公式进行因式分解,故C选项不符合题意D.,不能因式分解,故D选项不符合题意故选:B【点睛】本题考查了用平方差公式进行因式分解的知识,解题的关键是掌握平方差公式特点.二、填空题(每小题3分,共24分)11、3【分析】根据△ACM与△ABC全等,在网格上可以找到三个M点,可利用SSS证明△ACM与△ABC全等.【详解】根据题意在图中取到三个M点,分别为M1、M2、M3,如图所示:∵∴△ABC≌△CM1A∵∴△ABC≌△AM2C∵∴△ABC≌△CM3A故答案为:3【点睛】本题考查了全等三角形的性质和判定,本题主要利用SSS方法得到两个三角形全等.12、4.1【分析】如图(见解析),过点A作,过点C作,先利用勾股定理求出OA的长,再根据三角形全等的判定定理与性质求出OG的长,最后根据线段的和差即可得.【详解】如图,过点A作,过点C作,则四边形ADBH和四边形CEBG都是矩形由题意得,由矩形的性质得,在中,,即则,解得又则(米)故答案为:4.1.【点睛】本题考查了勾股定理、三角形全等的判定定理与性质、矩形的判定与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.13、【分析】首先利用待定系数法求出b的值,进而得到M点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M(1,b),

∴b=1+1,

解得b=2,

∴M(1,2),

∴关于x的方程组的解为,

故答案为.【点睛】此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.14、1【解析】把代入方程,即可解答.【详解】解:把代入方程,得:,解得:a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解决本题的关键是利用代入法解答即可.15、小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.16、【分析】作BE⊥AC垂足为E,交AD于F,此时CF+EF最小,利用面积法即可求得答案.【详解】作BE⊥AC垂足为E,交AD于F,∵AB=AC,BD=DC,

∴AD⊥BC,

∴FB=FC,

∴CF+EF=BF+EF,

∵线段BE是垂线段,根据垂线段最短,

∴点E、点F就是所找的点;∵,∴,∴CF+EF的最小值.故答案为:.【点睛】本题考查了等腰三角形的性质、垂直平分线的性质、垂线段最短等知识,掌握应用面积法求高是解决这个问题的关键.17、1【分析】根据估算无理数的大小的方法确定和的范围,可知满足条件的整数的情况.【详解】∵,,∴,,∴,满足条件的整数为:2,3,4,5,∴满足条件的整数的和为2+3+4+5=1.故答案为:1.【点睛】本题主要考查估算无理数的大小的知识点,解题关键是确定无理数的整数部分,比较简单.18、1【解析】∵有意义,∴x⩾0,−x⩾0,∴x=0,则==1故答案为1三、解答题(共66分)19、(1)105,60;(2)y=;(3)时,时或时.【分析】(1)根据题意和函数图象中的数据可以得到甲乙两车的速度;(2)根据题意和函数图象中的数据可以求得甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;(3)根据题意可知甲乙两车相距90千米分两种情况,从而可以解答本题.【详解】(1)由图可得,甲车的速度为:(210×2)÷4=420÷4=105千米/时,乙车的速度为:60千米/时,故答案为105,60;(2)由图可知,点M的坐标为(2,210),当0≤x≤2时,设y=k1x,∵M(2,210)在该函数图象上,2k1=210,解得,k1=105,∴y=105x(0≤x≤2);当2<x≤4时,设y=k2x+b,∵M(2,210)和点N(4,0)在该函数图象上,∴,得,∴y=﹣105x+420(2<x≤4),综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=;(3)设甲车出发a小时时两车相距90千米,当甲从A地到C地时,105a+60(a+1)+90=420,解得,a=,当甲从C地返回A地时,(210﹣60×3)+(105﹣60)×(a﹣2)=90,解得,a=,当甲到达A地后,420﹣60(a+1)=90,解得,a=,答:甲车出发时,时或时,两车相距90千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20、(1)证明见解析;(2)直线垂直平分线段.【分析】(1)根据等边对等角得到,再结合中线的定义得到,由三角形全等的判定可以证明,从而证明;(2)根据全等三角形的判定和性质得到平,再根据等腰三角形的三线合一的性质得到直线垂直平分线段.【详解】(1)证明:如图1所示:在中,,,又和是三角形的中线,和分别是边、的中点,,在和中,,,是等腰三角形;(2)直线垂直平分线段,理由如下:如图2所示,连接并延长交于点,是等腰三角形,,在和中,,直线垂直平分线段(等腰三角形三线合一)故答案为:直线垂直平分线段.【点睛】(1)利用三角形全等的判定证明对应角相等,由角相等可以得出等腰三角形;(2)利用三角形全等的判定和性质,证明对应角相等,得到平,再由等腰三角形三线合一即可得出结论.21、见解析;【解析】欲证明四边形BFDE是平行四边形只要证明OE=OF,OD=OB.【详解】证明:∵四边形ABCD是平行四边形∴AO=CO,BO=DO.又∵点E,点F分别是OA,OC的中点∴EO=,FO=∴EO=FO∴四边形BEDF为平行四边形【点睛】本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.22、(1)图见解析;(2)A′(1,3),点B′(2,1),点C′(-2,-2);【详解】解:(1)如图所示:

(2)A′、B′、C′的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论