版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在给出的一组数,,,,,中,是无理数的有()A.1个 B.2个 C.3个 D.5个2.下列计算正确的是()A.3x﹣2x=1 B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4 D.﹣x•x2•x4=﹣x73.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)
25
26
27
28
天数
1
1
2
3
则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,274.下列四个图案中,是轴对称图形的是()A. B. C. D.5.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于长为半径画弧,两弧交于点,作射线交于点,若,,则的面积为().A.10 B.15 C.20 D.306.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5C.(﹣2a2)4=16x6 D.a6÷a2=a37.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A. B. C. D.8.已知点与关于轴对称,则的值为()A.1 B. C.2019 D.9.已知图中的两个三角形全等,则∠α等于()A.72° B.60° C.58° D.48°10.下列命题中,假命题是()A.对顶角相等B.平行于同一直线的两条直线互相平行C.若,则D.三角形的一个外角大于任何一个和它不相邻的内角二、填空题(每小题3分,共24分)11.如图,中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,如果AC=6cm,BC=8cm,那么的周长为_________cm.12.若式子的值为零,则x的值为______.13.已知点与点关于直线对称,那么等于______.14.若关于x,y的二元一次方程组的解也是二元一次方程x+y=36的解,则k的值为_____.15.按一定规律排成的一列数依次为……照此下去,第个数是________.16.如图,在中,垂直平分交于点,若,,则_________________.17.若把多项式x2+5x﹣6分解因式为_____.18.若正比例函数的图象经过点,则的值是__________.三、解答题(共66分)19.(10分)如图所示,在平面直角坐标系中,已知、、.在平面直角坐标系中画出,则的面积是______;若点D与点C关于y轴对称,则点D的坐标为______;已知P为x轴上一点,若的面积为4,求点P的坐标.20.(6分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=[])21.(6分)如图,在平面直角坐标系中,直线与轴和轴分别交于点和点,与直线相交于点,,动点在线段和射线上运动.(1)求点和点的坐标.(2)求的面积.(3)是否存在点,使的面积是的面积的?若存在,求出此时点的坐标,若不存在,说明理由.22.(8分)如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在网格线的交点上,点B关于y轴的对称点的坐标为(2,0),点C关于x轴的对称点的坐标为(﹣1,﹣2).(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于y轴的对称图形△A1B1C1;(3)写出点A关于x轴的对称点的坐标.23.(8分)(1)先化简,再求值:,其中.(2)分解因式24.(8分)(1)计算:(2)若,求下列代数式的值:①;②.25.(10分)求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=26.(10分)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
参考答案一、选择题(每小题3分,共30分)1、B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】0.3,3.14,是有限小数,是有理数;,是分数,是有理数;,是无理数,共2个,故选:B.【点睛】本题主要考查了无理数的定义.初中范围内学习的无理数有:含的数等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.2、D【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【详解】解:A、3x﹣2x=x,故此选项错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故此选项错误;C、(﹣a2)2=a4,故此选项错误;D、﹣x•x2•x4=﹣x7,故此选项正确.故选:D.【点睛】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键.3、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.4、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故答案为:C.【点睛】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5、B【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,过作于,则,再根据三角形的面积公式即可求得.【详解】根据题中所作,为的平分线,∵,∴,过作于,则,∵,∴.选B.【点睛】本题的关键是根据作图过程明确AP是角平分线,然后根据角平分线的性质得出三角形ABD的高.6、B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.7、A【解析】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:.故选A.8、B【分析】根据关于x轴对称的点的坐标规律可求出m、n的值,代入即可得答案.【详解】∵点与关于x轴对称,∴m-1=2m-4,n+2=-2,解得:m=3,n=-4,∴=(3-4)2019=-1.故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;掌握好对称点的坐标规律是解题关键.9、D【分析】直接利用全等三角形的性质得出对应角进而得出答案.【详解】解:∵图中的两个三角形全等,∴∠α=180°﹣60°﹣72°=48°.故选D.【点睛】本题考查全等三角形的性质,解题的关键是掌握全等三角形的性质.10、C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A,真命题,符合对顶角的性质;B,真命题,平行线具有传递性;C,假命题,若≥0,则;D,真命题,三角形的一个外角大于任何一个和它不相邻的内角;故选:C.【点睛】考查学生对命题的定义的理解及运用,要求学生对常用的基础知识牢固掌握.二、填空题(每小题3分,共24分)11、1【分析】依据△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根据勾股定理可得AB的长,进而得出EB的长;设DE=CD=x,则BD=8-x,依据勾股定理可得,Rt△BDE中,DE2+BE2=BD2,解方程即可得到DE的长,再利用BC-CD得出BD的长,最后把BE,DE和BD相加求解即可.【详解】解:∵AD平分∠CAB,
∴∠CAD=∠EAD,
又∵∠C=90°,DE⊥AB,
∴∠C=∠AED=90°,
又∵AD=AD,
∴△ACD≌△AED(AAS),
∴AC=AE=6cm,CD=ED,
∵Rt△ABC中,AB==10(cm),
∴BE=AB-AE=10-6=4(cm),
设DE=CD=x,则BD=8-x,
∵Rt△BDE中,DE2+BE2=BD2,
∴x2+42=(8-x)2,
解得x=3,
∴DE=CD=3cm,∴BD=BC-CD=8-3=5cm,∴BE+DE+BD=3+4+5=1cm,
故答案为:1.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解是解决问题的关键.12、﹣1【分析】直接利用分式的值为零则分子为零分母不等于零,进而得出答案.【详解】∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为﹣1.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.13、1【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x对称,则y相等,所以,.【详解】点与点关于直线对称∴,解得,∴故答案为1.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.14、1【分析】先用含k的式子表示x、y,根据方程组的解也是二元一次方程x+y=36的解,即可求得k的值.【详解】解:解方程组得,,因为方程组的解也是二元一次方程x+y=36的解,所以3k=36,解得k=1.故答案为1.【点睛】本题考查二元一次方程与方程组的解的意义,深刻理解定义是解答关键.15、【分析】根据题目给出数列的规律即可求出答案.【详解】解:分子可以看出:故第10个数的分子为:分母可以看出:第奇数个分母是其个数的平方加1,例如:12+1=2,32+1=10,52+1=26,
第偶数个分母是其个数的平方减1,例如:22-1=3,42-1=15,62-1=35,故这列数中的第10个数是:故答案为:【点睛】此题主要考查了数字变化规律,正确得出分母的变化规律是解题关键.16、【分析】由勾股定理得到的长度,利用等面积法求,结合已知条件得到答案.【详解】解:垂直平分,故答案为:.【点睛】本题考查的是勾股定理的应用,等面积法的应用,掌握以上知识是解题的关键.17、(x﹣1)(x+6)【分析】利用十字相乘法求解可得.【详解】解:x2+5x﹣6=(x﹣1)(x+6),故答案为:(x﹣1)(x+6).【点睛】本题考查了运用十字相乘因式分解,掌握因式分解的方法是解题的关键.18、-1【分析】把点代入函数解析式,列出关于a的方程,通过解方程组来求a的值.【详解】∵正比例函数的图象经过点,∴解得,a=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx(k≠0).三、解答题(共66分)19、(1)图详见解析,4;(2)
;(3)P点坐标为:或.【分析】直接利用所在矩形面积减去周围三角形面积进而得出答案;利用关于y轴对称点的性质得出答案;利用三角形面积求法得出符合题意的答案.【详解】如图所示:的面积是:;故答案为4;点D与点C关于y轴对称,则点D的坐标为:;故答案为;为x轴上一点,的面积为4,,点P的横坐标为:或,故P点坐标为:或.【点睛】此题主要考查了三角形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.20、解:(1)1;1.(2)s2甲=;s2乙=.(3)推荐甲参加比赛更合适.【详解】解:(1)1;1.(2)s2甲===;s2乙===.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.21、(1),;(2)12;(3)的坐标是或或【分析】(1)分别令x=0,y=0进行求解即可得到B,C的坐标;(2)利用三角形的面积公式进行计算即可得解;(3)对M进行分类,当M在线段OA上和当M在射线AC上运动两种情况进行讨论即可得解.【详解】(1)直线,令x=0,得y=6,即,令y=0,得x=6,则;(2)∵,,∴OC=6,∴;(3)存在点,使的面积是的面积的,设,OA的解析式为,则,解得,则OA的解析式为,∵当时,即,又∵,∴,当M在线段OA上时,,∴时,,则点的坐标是;当M在射线AC上时,即在射线上时,∴时,,则点的坐标是;时,,则点的坐标是,综上所述,的坐标是或或.【点睛】本题主要考查了函数图象与坐标轴的交点求解,三角形的面积求解及面积存在性问题,熟练掌握三角形的相关面积计算是解决本题的关键.22、(1)详见解析;(2)详见解析;(3)(-4,-4).【分析】(1)依据点B关于y轴的对称点坐标为(2,0),点C关于x轴的对称点坐标为(-1,-2),即可得到坐标轴的位置;(2)依据轴对称的性质,即可得到△ABC分别关于y轴的对称图形△A1B1C1;(3)依据关于x轴的对称点的横坐标相同,纵坐标互为相反数,即可得到点A关于x轴的对称点的坐标.【详解】解:(1)如图所示,建立平面直角坐标系xOy.(2)如图所示,△A1B1C1即为所求;(3)A点关于x轴的对称点的横坐标相同,纵坐标互为相反数,所以点A(-4,4)关于x轴的对称点的坐标(-4,-4).【点睛】本题主要考查作图−轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.23、(1),3;(2).【分析】(1)先将原式去掉括号再化简,最后代入求值即可;(2)先提取公因式,然后利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024房产买卖合同纠纷
- 2024著作权登记合同
- 2024简单商铺租赁合同样本
- 2024-2025学年九年级历史上册第七单元工业革命和国际共产主义运动的兴起第20课第一次工业革命同步练习新人教版
- 2024-2025学年新教材高中地理第四章陆地水与洋流第一节陆地水体间的相互关系课时练习含解析湘教版选择性必修一
- 2024-2025学年八年级历史上册第二单元近代化的早期探索与民族危机的加剧第五课甲午中日战争与列强瓜分中国狂潮同步练习新人教版
- 2024-2025学年高中地理第3章自然地理环境的整体性与差异性第1节自然地理要素变化与环境变迁作业含解析湘教版必修1
- 2024年工业厂房铝扣板施工协议
- 2024年工程变更与索赔协议
- 2024年学校锅炉操作员职位合同
- 公司员工劳保用品发放标准和管理办法
- 小学学生发展多元化评价体系
- 高考高中常考化学方程式归纳题
- T-CCIAT 0044-2022 智慧园区以太全光网络建设技术规程
- 人间第一情-完整版PPT
- 高速公路工程施工安全标准化指南(安全技术分册)
- 四年级下册语文课件-第四单元 复习课件 (共30张PPT)部编版
- 机械设计课程设计说明书 11机电本 刘伟华
- 问卷1:匹兹堡睡眠质量指数量表(PSQI)
- 养殖场租赁合同协议书范本4篇
- 淡蓝插画风档案管理培训PPT模板
评论
0/150
提交评论