下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【学习目标
整式方程知识讲【要点梳理要点一、一元整式方 nnn是正整数),这个方程叫做一元n次方n,若次数n2要点诠释要点二、二项方概念:n要点诠释一般形式axnb0(a0b0n是正整数二项方程的基本方法:是(开方解的情况nba当n为奇数时,方程有且只有一个实数根,xnba要点三、双二次方概念:只含有偶数次项的一元四次方程要点诠释一般形式ax4bx2c0(a解题的一般步骤:换元——解一元二次方程——回要点诠释【典型例题类型一、一元一次方程和一元二次方程的解x1(2016 2
x 解:去分母得:10x5x1202x去括号得:10x5x5202x7x系数化为1得: 7x 2x x
4(x23(2x5)2(x14x86x152x294x9系数化为1,得x 4 【思路点拨】解决这类题目要有整体的思想,(1)中把“x+2(2)中把“2x+3”看做4 4 x1=-2,x2 3(2)(2x+3- 【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方举一反三 (2)(3x1)(x1)(4x1)(x1)即(2x3)203∴x1x22x11x22(1)可以用完全平方公(2)x=1类型二、含字母系数的整式方程的解3.xmx1axb,再考虑有解、无解、无穷多解的模式。(mn)xmn0mnxmn0mn
;m1x的方程(k-4)x=6k
k4xk为
k
k46k4可为答:自然数k的值为(a﹣1)x=3.当a≠1时,解得:x=.类型三、特殊的高次方程的解 (2)x4x(3)x5 (4)x3x((1 3 x3 55 x5(1)x49x214 (2)x310x25(3)2x47x34 (4)x49x2202(1((1)x2=y,x4y2y227171
x2277222772
x
,x2= ,x3
,x4=x2=yx4y2y12由y=-4,得x2=-4,它没有实数根;y=-5x2=-5,它也没有实数根12类型四、问题拓①x45x260 ②2x43x210③x42x240 ④2x46
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国篱笆修剪机数据监测研究报告
- 福州市老旧社区公共空间的适老性评价研究
- 2025年度智慧医疗系统开发与应用合同4篇
- 二零二五年度新能源汽车充电桩土地租赁合同3篇
- 2025年个人水利工程建设与维护承包合同模板3篇
- 2025年度报刊亭承揽加工安装与绿色出行倡导合同4篇
- 二零二五年度生态农业项目种植与加工承包合同4篇
- 2025年度诚意金协议模板:新能源汽车采购预付款协议4篇
- 2023年-2024年公司项目部负责人安全教育培训试题及答案【易错题】
- 二零二五年IT运维团队绩效考核合同3篇
- 乳腺癌的综合治疗及进展
- 【大学课件】基于BGP协议的IP黑名单分发系统
- 2025年八省联考高考语文试题真题解读及答案详解课件
- 信息安全意识培训课件
- 2024年山东省泰安市初中学业水平生物试题含答案
- 美的MBS精益管理体系
- 中国高血压防治指南(2024年修订版)解读课件
- 2024安全员知识考试题(全优)
- 2024年卫生资格(中初级)-中医外科学主治医师考试近5年真题集锦(频考类试题)带答案
- 中国大百科全书(第二版全32册)08
- 医院出入口安检工作记录表范本
评论
0/150
提交评论