版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EntropyandFreeEnergySpontaneousvs.non-spontaneousthermodynamicsvs.kineticsentropy=randomness(So)Gibbsfreeenergy(Go)
Goforreactions-predictingspontaneousdirection
thermodynamicsofcoupledreactions
GrxnversusGorxn
predictingequilibriumconstantsfromGorxn
1EntropyandFreeEnergySpontaEntropyandFreeEnergyHowcanwepredictifareactioncanoccur,givenenoughtime?Note:ThermodynamicsDOESNOTsayhowquickly(orslowly)areactionwilloccur.Topredictifareactioncanoccuratareasonablerate,oneneedstoconsider:Someprocessesarespontaneous;othersneveroccur.WHY?THERMODYNAMICSKINETICS2EntropyandFreeEnergyHowcanProduct-FavoredReactionse.g.thermitereactionFe2O3(s)+2Al(s) 2Fe(s)+Al2O3(s)DH=-848kJIngeneral,product-favoredreactionsareexothermic.3Product-FavoredReactionse.g.Non-exothermicspontaneousreactionsButmanyspontaneousreactionsorprocessesareendothermic...NH4NO3(s)+heatNH4+(aq)+NO3-(aq)
Hsol=+25.7kJ/molorhaveH=0...4Non-exothermicspontaneousreaPROBABILITY-predictorofmoststablestateWHYDOPROCESSESwithH=0occur?Considerexpansionofgasestoequalpressure:Thisisspontaneousbecausethefinalstate,withequal#moleculesineachflask,ismuchmoreprobablethantheinitialstate,withallmoleculesinflask1,noneinflask2SYSTEMCHANGEStostateofHIGHERPROBABILITYForentropy-drivenreactions-themoreRANDOMstate.5PROBABILITY-predictorofmosGasexpansion-spontaneityfromgreaterprobabilityConsiderdistributionof4moleculesin2flasksP1<P2P1>P2P1=P2Withmoremolecules(>1020)P1=P2ismostprobablebyfar6Gasexpansion-spontaneityfrDirectionalityofReactionsHowprobableisitthatreactantmoleculeswillreact?PROBABILITYsuggeststhataproduct-favoredreactionwillresultinthedispersalofenergy
or
dispersalofmatter
orboth.7DirectionalityofReactionsHowSpontaneousProcessesAprocessthatisspontaneousinonedirectionisnotspontaneousintheoppositedirection.Thedirectionofaspontaneousprocesscandependontemperature:IceturningtowaterisspontaneousatT>0C,WaterturningtoiceisspontaneousatT<0C.8SpontaneousProcessesAprocessStandardEntropies,SoEverysubstanceatagiventemperatureandinaspecificphasehasawell-definedEntropyAt298otheentropyofasubstanceiscalled
So-withUNITSofJ.K-1.mol-1ThelargerthevalueofSo,thegreaterthedegreeofdisorderorrandomnesse.g.So(inJK-1mol-1): Br2(liq)=152.2 Br2(gas)=245.5Foranyprocess:
So=So(final)-So(initial)So(vap.,Br2)=(245.5-152.2)=93.3JK-1mol-19StandardEntropies,SoEverysS(gases)>>S(liquids)>S(solids) So(J/K•mol)H2O(g) 188.8H2O(l) 69.9H2O(s)47.9IceWaterVapourEntropyandPhase10S(gases)>>S(liquids)>Theentropyofasubstanceincreaseswithtemperature.Molecularmotionsdifferenttemps.EntropyandTemperatureHigherTmeans:morerandomnesslargerS11TheentropyofasubstanceincEntropyandcomplexityIncreaseinmolecularcomplexitygenerallyleadstoincreaseinS. So(J/K•mol)CH4 248.2C2H6 336.1C3H8 419.412EntropyandcomplexityIncreaseIonicSolids:Entropydependsonextentofmotionofions.Thisdependsonthestrengthofcoulombicattraction.EntropyofIonicSubstancesEntropyincreaseswhenapureliquidorsoliddissolvesinasolvent.NH4NO3(s)NH4+(aq)+NO3-(aq)Ssol= ionpairs So(J/K•mol)MgO Mg2+/O2- 26.9NaF Na+/F- 51.5So(aq.ions)-So(s) =259.8-151.1 =108.7JK-1mol-113IonicSolids:EntropydependsEntropyChangesforPhaseChangesForaphasechange, DS=q/Twhereq=heattransferredinphasechangeForH2O(liq)--->H2O(g)DH=q=+40,700J/mol14EntropyChangesforPhaseChanTheMolecularInterpretationofEntropy15TheMolecularInterpretationoConsider2H2(g)+O2(g)2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinS
because3molofgasgive2molofliquid.CalculatingSforaReactionDSo=SSo(products)-SSo(reactants)IfSDECREASES,
whyisthisaSPONTANEOUSREACTION??
16Consider2H2(g)+O2(g)2HTheMolecularInterpretationofEntropyEnergyisrequiredtogetamoleculetotranslate,vibrateorrotate.Themoreenergystoredintranslation,vibrationandrotation,thegreaterthedegreesoffreedomandthehighertheentropy.Inaperfectcrystalat0Kthereisnotranslation,rotationorvibrationofmolecules.Therefore,thisisastateofperfectorder.ThirdLawofThermodynamics:theentropyofaperfectcrystalat0Kiszero.Entropychangesdramaticallyataphasechange.17TheMolecularInterpretationoE=q+wTheLawsofThermodynamics0.TwobodiesinthermalequilibriumareatsameT1.Energycanneverbecreatedordestroyed.2.ThetotalentropyoftheUNIVERSE(=systemplussurroundings)MUSTINCREASEineveryspontaneousprocess.STOTAL=Ssystem+Ssurroundings>03.Theentropy(S)ofapure,perfectlycrystallinecompoundatT=0KisZERO.(nodisorder)ST=0=0(perfectxll)18E=q+wTheLawsofThermo2ndLawofThermodynamicsAreactionisspontaneous(product-favored)ifDSfortheuniverseispositive.DSuniverse=DSsystem+DSsurroundingsDSuniverse>0forproduct-favoredprocessFirst,calc.entropycreatedbymatterdispersal(DSsystem)Next,calc.entropycreatedbyenergydispersal(DSsurround)192ndLawofThermodynamicsAreaConsider2H2(g)+O2(g)--->2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+ 1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinSbecause3molofgasgive2molofliquid.CalculatingDSforaReactionDSo=So(products)-So(reactants)20Consider2H2(g)+O2(g)--->2H2(g)+O2(g)--->2H2O(l)DSosystem=-326.9J/K
2ndLawofThermodynamics212H2(g)+O2(g)--->2H2O(l)22H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/K
2ndLawofThermodynamics222H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJ
2ndLawofThermodynamics232H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJ
2ndLawofThermodynamics242H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJDSosurroundings=+1917J/K
2ndLawofThermodynamics252H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(l)DSosystem=-326.9J/KDSosurroundings=+1917J/KDSouniverse=+1590.J/KTheentropyoftheuniverseisincreasing,sothereactionisproduct-favored.2ndLawofThermodynamics262H2(g)+O2(g)--->2H2O(l)22H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KDSosurroundings=+1917J/KDSouniverse=+1590.J/KTheentropyoftheuniverseisincreasing,sothereactionisproduct-favored.
2ndLawofThermodynamics272H2(g)+O2(g)--->2H2O(liqGibbsFreeEnergy,GDSuniv=DSsurr+DSsysGibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDSuniv=DSsurr+DSsysGibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-TGibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-T-TDSuniv=DHsys-TDSsysDSuniv
=
-DHsysT
+
DSsys
GibbsFreeEnergy,GDSuniv=GibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-T-TDSuniv=DHsys-TDSsys-TDSuniv=changeinGibbsfreeenergyfortheuniverse=DGsystemGibbsFreeEnergy,GDSuniv=GibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-T-TDSuniv=DHsys-TDSsys-TDSuniv=changeinGibbsfreeenergyfortheuniverse=DGuniv=DGsystemUnderstandardconditions—DGo=DHo-TDSoDSuniv
=
-DHsysT
+
DSsys
GibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDGo=DHo-T
DSoGibbsfreeenergychange=DGo=totalenergychangeforsystem -energylostindisorderingthesystemIfreactionisexothermic(DHo<0)andentropyincreases(DSo>0),thenDGo<0,thatis,negativeandreactionproduct-favored.Ifreactionisendothermic(DHo>0),andentropydecreases(DSo<0),thenDGo>0andreactionisreactant-favored.GibbsFreeEnergy,GDGo=DHoGibbsFreeEnergy,G
DGo=DHo-TDSoDHo
DSo
DGoReactionexo(-) increase(+) - Prod-favoredendo(+) decrease(-) + React-favoredexo(-) decrease(-) ? Tdependentendo(+) increase(+) ? TdependentGibbsFreeEnergy,G DGoMethodsofcalculatingGTwomethodsofcalculatingDGoGorxn=S
Gfo(products)-S
Gfo(reactants)DetermineDHorxnandDSorxnanduseGibbsequation.b)Usetabulatedvaluesoffreeenergiesofformation,DGfo.DGo=DHo-TDSo36MethodsofcalculatingGTwomExampleAtwhatTisthefollowingreactionspontaneous?Br2(l)Br2(g)whereDH°=30.91kJ/mol,DS°=93.2J/mol.KAns:DG°=DH°-TDS°37ExampleAtwhatTisthefollowTry298Kjusttosee:DG°=DH°-TDS°DG°=30.91kJ/mol-(298K)(93.2J/mol.K)DG°=(30.91-27.78)kJ/mol=3.13kJ/mol>0Notspontaneousat298KBr2(l)Br2(g)whereDH°=30.91kJ/mol,DS°=93.2J/mol.K38Try298Kjusttosee:DG°=DHExample(cont.)AtwhatTthen?DG°=DH°-TDS°T=DH°/DS°T=(30.91kJ/mol)/(93.2J/mol.K)=0T=331.65K=58.5oC39Example(cont.)AtwhatTthen?CalculatingDG°Inourpreviousexample,weneededtodetermineDH°rxnandDS°rxntodetermineDG°rxnNow,DGisastatefunction;therefore,wecanuseknownDG°todetermineDG°rxnusing:40CalculatingDG°InourpreviousStandardDGofFormation:DGf°LikeDHf°andS°,DGf°isdefinedasthe“changeinfreeenergythataccompaniestheformationof1moleofthatsubstanceforitsconstituentelementswithallreactantsandproductsintheirstandardstate.”LikeDHf°,DGf°=0foranelementinitsstandardstate:Example:DGf°(O2(g))=041StandardDGofFormation:DGfExampleDeterminetheDG°rxnforthefollowing:C2H4(g)+H2O(l)C2H5OH(l)TabulatedDG°ffromtableslikeAppendixD:
DG°f(C2H5OH(l))=-175kJ/mol
DG°f(C2H4(g))=68kJ/mol
DG°f(H2O(l))=-237kJ/mol42ExampleDeterminetheDG°rxnfoExample(cont.)Usingthesevalues:C2H4(g)+H2O(l)C2H5OH(l)DG°rxn=DG°f(C2H5OH(l))–[DG°f(C2H4(g))+DG°f(H2O(l))]DG°rxn=-175kJ–[68kJ+(-237kJ)]DG°rxn=-6kJ<0;therefore,spontaneous43Example(cont.)UsingthesevalMoreDG°CalculationsSimilartoDH°,onecanusetheDG°forvariousreactionstodetermineDG°forthereactionofinterest(a“Hess’Law”forDG°)Example:C(s,diamond)+O2(g)CO2(g)DG°=-397kJC(s,graphite)+O2(g)CO2(g)DG°=-394kJ44MoreDG°CalculationsSimilartMoreDG°Calculations(cont.)C(s,diamond)+O2(g)CO2(g)DG°=-397kJC(s,graphite)+O2(g)CO2(g)DG°=-394kJCO2(g)C(s,graphite)+O2(g)DG°=+394kJC(s,diamond)C(s,graphite)DG°=-3kJDG°rxn<0…..rxnisspontaneous45MoreDG°Calculations(cont.)CDG°rxn≠ReactionRateAlthoughDG°rxncanbeusedtopredictifareactionwillbespontaneousaswritten,itdoesnottellushowfastareactionwillproceed.Example: C(s,diamond)+O2(g)CO2(g)DG°rxn=-397kJButdiamondsareforever….<<0DG°rxn≠rate46DG°rxn≠ReactionRateAlthoughCombustionofacetyleneC2H2(g)+5/2O2(g)-->2CO2(g)+H2O(g)Useenthalpiesofformationtocalculate
DHorxn=-1238kJ<0Usestandardmolarentropiestocalculate
DSorxn=-97.4J/K=-0.0974kJ/K<0DGorxn=-1238kJ-(298K)(-0.0974J/K) =-1209kJ<0Reactionisproduct-favoredinspiteofnegativeDSorxn.Reactionis“enthalpydriven”CalculatingDGCombustionofacetyleneCalculaGoforCOUPLEDCHEMICALREACTIONSReductionofironoxidebyCOisanexampleofusingTWOreactionscoupledtoeachotherinordertodriveathermodynamicallyforbiddenreaction:Fe2O3(s)4Fe(s)+3/2O2(g)DGorxn=+742kJ
3/2C(s)+3/2O2(g)3/2CO2(g)
DGorxn=-592kJwithathermodynamicallyallowedreaction:Overall:Fe2O3(s)+3/2C(s)2Fe(s)+3/2CO2(g)DGorxn=+301kJ25oCBUT
DGorxn<0kJforT>563oCSeeKotz,pp933-935foranalysisofthethermitereaction48GoforCOUPLEDCHEMICALREACTOtherexamplesofcoupledreactions:CoppersmeltingCu2S(s)2Cu(s)+S(s)DGorxn=+86.2kJ (FORBIDDEN)
Couplethiswith:S(s)+O2(g)SO2(s)DGorxn=-300.1kJ
Overall:Cu2S(s)+O2(g)2Cu(s)+SO2(s)
DGorxn=+86.2kJ+-300.1kJ=-213.9kJ(ALLOWED)CoupledreactionsVERYCOMMONinBiochemistry:e.g. allbio-synthesisdrivenby ATPADPforwhich
DHorxn=-20kJ
DSorxn=+34J/K
DGorxn=-30kJ37oC49OtherexamplesofcoupledreacTheConcentration
DependenceofSpontaneityAswithH°andS°,G°valueshavebeentabulatedforthestandardstateveryfewreactionsoccuratstandardconditionsnotingthatHandSchangeverylittlewithchangingT,wecanmaketheassumption50TheConcentration
DependenceTheConcentration
DependenceofSpontaneityThisworksforchangesinT,butGwillchangesignificantlywithchangingconcentrationand/orpressureForanyreactionaA+bBcC+dD51TheConcentration
Dependence5252TheConcentration
DependenceofSpontaneityOnepossiblesourceofacidrainisthereactionbetweenNO2,apollutantfromautomobileexhausts,andwater.3NO2(g)+H2O(l)2HNO3(g)+NO(g) Determinewhetherthisisthermodynamicallyfeasible(a)understandardconditionsand(b)at298K,witheachproductgaspresentatP=1.0010-6atm.Given:
G°f(NO2(g))=51.3kJ/mol
G°f(H2O(l))=-237.1kJ/mol
G°f(HNO3(g))=-73.5kJ/mol
G°f(NO(g))=87.6kJ/mol53TheConcentration
Dependence5454TheTemperature
DependenceofSpontaneityG=H-TS55TheTemperature
DependenceofBioenergeticsThebasicprocessesoflifecanbethoughtofasmakingorderoutofdisorderThisseemstogoagainstthesecondlawTocreateorder,systemsmustreleaseheattothesurroundingsLivingsystemsuselargeamountsofenergytosurvivemostcommonenergysourcesarecarbohydratesandfats56BioenergeticsThebasicprocessBioenergeticsThereactionofglucosewithoxygenishighlyspontaneousC6H12O6+6O2
6CO2+6H2OG°=-2870kJ/mol
asistheoxidationofpalmiticacidC15H31COOH+23O216CO2+16H2OG°=-9790kJ/mol57BioenergeticsThereactionofgBioenergeticsThesereactionsreleasetoomuchenergyforacelltohandlesomeoftheenergymustbestoredstoredbyconvertingADPtoATP:ADP+H3PO4ATP+H2OG°=30.6kJ/mol58BioenergeticsThesereactionsrBioenergeticsCellsuseenergystoredinATPtodrivenonspontaneousreactionsATP+H2OADP+H3PO4G°=-30.6kJ/molATPconversioncanbecoupledtootherreactionstransfersenergyfromonereactiontoanotherAminoAcidsynthesis59BioenergeticsCellsuseenergyBioenergeticsglutamicacid+NH3glutamine+H2OG°=14+kJ/molATP+H2OADP+H3PO4G°=-30.6kJ/molglutamicacid+NH3+ATPglutamine+ADP+H3PO4G°=-16.6kJ/mol60Bioenergeticsglutamicacid+NBioenergeticsCellsarenot100%efficientinstoringenergyasATP1glucosemoleculeproduces36ATPmoleculesC6H12O6+6O26CO2+6H2OG°=-2870kJ/mol36ADP+36H3PO436ATP+36H2OG°=1102kJ/molC6H12O6+6O2+36ADP+36H3PO46CO2+6H2O+36ATP+36H2OG°=-1768kJ/mol38%ATP,62%asHEAT61BioenergeticsCellsarenot100Extraslides62Extraslides62ThermodynamicsandKeqKeqisrelatedtoreactionfavorability.IfDGorxn<0,reactionisproduct-favored.
DGorxnisthechangeinfreeenergyasreactantsconvertcompletelytoproducts.Butsystemsoftenreachastateofequilibriuminwhichreactantshavenotconvertedcompletelytoproducts.Howtodescribethermodynamically?63ThermodynamicsandKeqKeqisrGrxnversusGorxn
Underanyconditionofareactingsystem,wecandefineGrxnintermsoftheREACTIONQUOTIENT,QGrxn=
Gorxn+RTlnQAtequilibrium,Grxn=0.Also,Q=K.ThusIfGrxn<0thenreactionproceedstorightIfGrxn>0thenreactionproceedstoleftDGorxn=-RTlnK64GrxnversusGorxnUnderany2NO2
N2O4
DGorxn=-4.8kJpureNO2hasDGrxn<0.ReactionproceedsuntilDGrxn=0-theminimuminG(reaction)-seegraph.Atthispoint,bothN2O4andNO2arepresent,withmoreN2O4.Thisisaproduct-favoredreaction.ThermodynamicsandKeq(2)652NO2N2O4ThermodynamicsanN2O4
2NO2
DGorxn=+4.8kJpureN2O4hasDGrxn<0.ReactionproceedsuntilDGrxn=0-theminimuminG(reaction)-seegraph.Atthispoint,bothN2O4andNO2arepresent,withmoreNO2.Thisisareactant-favoredreaction.ThermodynamicsandKeq(3)66N2O42NO2 DGorxn=+4.8ThermodynamicsandKeq(4)KeqisrelatedtoreactionfavorabilityandsotoDGorxn.ThelargerthevalueofDGorxnthelargerthevalueofK.DGorxn=-RTlnKwhereR=8.31J/K•mol67ThermodynamicsandKeq(4)KeqCalculateKforthereactionN2O42NO2
DGorxn=+4.8kJDGorxn=+4800J=-(8.31J/K)(298K)lnKDGorxn=-RTlnKThermodynamicsandKeq(5)WhenGorxn>0,thenK<1-reactantfavouredWhenGorxn<0,thenK>1-productfavouredK=0.1468CalculateKforthereactionDGEntropyandFreeEnergy
Spontaneousvs.non-spontaneousthermodynamicsvs.kineticsentropy=randomness(So)Gibbsfreeenergy(Go)
Goforreactions-predictingspontaneousdirection
thermodynamicsofcoupledreactions
GrxnversusGorxn
predictingequilibriumconstantsfromGorxn
69EntropyandFreeEnergy
SponEntropyandFreeEnergySpontaneousvs.non-spontaneousthermodynamicsvs.kineticsentropy=randomness(So)Gibbsfreeenergy(Go)
Goforreactions-predictingspontaneousdirection
thermodynamicsofcoupledreactions
GrxnversusGorxn
predictingequilibriumconstantsfromGorxn
70EntropyandFreeEnergySpontaEntropyandFreeEnergyHowcanwepredictifareactioncanoccur,givenenoughtime?Note:ThermodynamicsDOESNOTsayhowquickly(orslowly)areactionwilloccur.Topredictifareactioncanoccuratareasonablerate,oneneedstoconsider:Someprocessesarespontaneous;othersneveroccur.WHY?THERMODYNAMICSKINETICS71EntropyandFreeEnergyHowcanProduct-FavoredReactionse.g.thermitereactionFe2O3(s)+2Al(s) 2Fe(s)+Al2O3(s)DH=-848kJIngeneral,product-favoredreactionsareexothermic.72Product-FavoredReactionse.g.Non-exothermicspontaneousreactionsButmanyspontaneousreactionsorprocessesareendothermic...NH4NO3(s)+heatNH4+(aq)+NO3-(aq)
Hsol=+25.7kJ/molorhaveH=0...73Non-exothermicspontaneousreaPROBABILITY-predictorofmoststablestateWHYDOPROCESSESwithH=0occur?Considerexpansionofgasestoequalpressure:Thisisspontaneousbecausethefinalstate,withequal#moleculesineachflask,ismuchmoreprobablethantheinitialstate,withallmoleculesinflask1,noneinflask2SYSTEMCHANGEStostateofHIGHERPROBABILITYForentropy-drivenreactions-themoreRANDOMstate.74PROBABILITY-predictorofmosGasexpansion-spontaneityfromgreaterprobabilityConsiderdistributionof4moleculesin2flasksP1<P2P1>P2P1=P2Withmoremolecules(>1020)P1=P2ismostprobablebyfar75Gasexpansion-spontaneityfrDirectionalityofReactionsHowprobableisitthatreactantmoleculeswillreact?PROBABILITYsuggeststhataproduct-favoredreactionwillresultinthedispersalofenergy
or
dispersalofmatter
orboth.76DirectionalityofReactionsHowSpontaneousProcessesAprocessthatisspontaneousinonedirectionisnotspontaneousintheoppositedirection.Thedirectionofaspontaneousprocesscandependontemperature:IceturningtowaterisspontaneousatT>0C,WaterturningtoiceisspontaneousatT<0C.77SpontaneousProcessesAprocessStandardEntropies,SoEverysubstanceatagiventemperatureandinaspecificphasehasawell-definedEntropyAt298otheentropyofasubstanceiscalled
So-withUNITSofJ.K-1.mol-1ThelargerthevalueofSo,thegreaterthedegreeofdisorderorrandomnesse.g.So(inJK-1mol-1): Br2(liq)=152.2 Br2(gas)=245.5Foranyprocess:
So=So(final)-So(initial)So(vap.,Br2)=(245.5-152.2)=93.3JK-1mol-178StandardEntropies,SoEverysS(gases)>>S(liquids)>S(solids) So(J/K•mol)H2O(g) 188.8H2O(l) 69.9H2O(s)47.9IceWaterVapourEntropyandPhase79S(gases)>>S(liquids)>Theentropyofasubstanceincreaseswithtemperature.Molecularmotionsdifferenttemps.EntropyandTemperatureHigherTmeans:morerandomnesslargerS80TheentropyofasubstanceincEntropyandcomplexityIncreaseinmolecularcomplexitygenerallyleadstoincreaseinS. So(J/K•mol)CH4 248.2C2H6 336.1C3H8 419.481EntropyandcomplexityIncreaseIonicSolids:Entropydependsonextentofmotionofions.Thisdependsonthestrengthofcoulombicattraction.EntropyofIonicSubstancesEntropyincreaseswhenapureliquidorsoliddissolvesinasolvent.NH4NO3(s)NH4+(aq)+NO3-(aq)Ssol= ionpairs So(J/K•mol)MgO Mg2+/O2- 26.9NaF Na+/F- 51.5So(aq.ions)-So(s) =259.8-151.1 =108.7JK-1mol-182IonicSolids:EntropydependsEntropyChangesforPhaseChangesForaphasechange, DS=q/Twhereq=heattransferredinphasechangeForH2O(liq)--->H2O(g)DH=q=+40,700J/mol83EntropyChangesforPhaseChanTheMolecularInterpretationofEntropy84TheMolecularInterpretationoConsider2H2(g)+O2(g)2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinS
because3molofgasgive2molofliquid.CalculatingSforaReactionDSo=SSo(products)-SSo(reactants)IfSDECREASES,
whyisthisaSPONTANEOUSREACTION??
85Consider2H2(g)+O2(g)2HTheMolecularInterpretationofEntropyEnergyisrequiredtogetamoleculetotranslate,vibrateorrotate.Themoreenergystoredintranslation,vibrationandrotation,thegreaterthedegreesoffreedomandthehighertheentropy.Inaperfectcrystalat0Kthereisnotranslation,rotationorvibrationofmolecules.Therefore,thisisastateofperfectorder.ThirdLawofThermodynamics:theentropyofaperfectcrystalat0Kiszero.Entropychangesdramaticallyataphasechange.86TheMolecularInterpretationoE=q+wTheLawsofThermodynamics0.TwobodiesinthermalequilibriumareatsameT1.Energycanneverbecreatedordestroyed.2.ThetotalentropyoftheUNIVERSE(=systemplussurroundings)MUSTINCREASEineveryspontaneousprocess.STOTAL=Ssystem+Ssurroundings>03.Theentropy(S)ofapure,perfectlycrystallinecompoundatT=0KisZERO.(nodisorder)ST=0=0(perfectxll)87E=q+wTheLawsofThermo2ndLawofThermodynamicsAreactionisspontaneous(product-favored)ifDSfortheuniverseispositive.DSuniverse=DSsystem+DSsurroundingsDSuniverse>0forproduct-favoredprocessFirst,calc.entropycreatedbymatterdispersal(DSsystem)Next,calc.entropycreatedbyenergydispersal(DSsurround)882ndLawofThermodynamicsAreaConsider2H2(g)+O2(g)--->2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+ 1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinSbecause3molofgasgive2molofliquid.CalculatingDSforaReactionDSo=So(products)-So(reactants)89Consider2H2(g)+O2(g)--->2H2(g)+O2(g)--->2H2O(l)DSosystem=-326.9J/K
2ndLawofThermodynamics902H2(g)+O2(g)--->2H2O(l)22H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/K
2ndLawofThermodynamics912H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJ
2ndLa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保护环境珍惜资源的建议书
- 中秋节联欢会的精彩致辞范文(12篇)
- 中秋晚会幼儿活动主持词范文(5篇)
- 五好职工先进事迹材料(16篇)
- 损伤病人的护理-习题题库
- 轮胎噪声测试方法 转鼓法 编制说明
- 摄影感想课件教学课件
- 《鲁宾逊漂流记》读后感
- 宪法教育课件教学课件
- 三年级数学计算题专项练习汇编及答案
- 液化气站消防安全知识员工培训
- 冲压常用铆接工艺简介
- 液化气站双控风险告知卡
- 江苏开放大学答案 第2次作业(单元4)
- 一年级数学专项练习(大括号问题、求总数、求部分数、一图四式)
- 第二节、复韵母
- 幼儿园优质公开课:小班语言《甜甜的,酸酸的》课件
- 混凝土有限公司财务管理制度
- 感动中国十大人物顾方舟事迹ppt(思修课堂展示or爱国主题演讲)
- 《正确认识缓解焦虑》调节考试焦虑正确迎考主题班会课件
- 合同交底记录表
评论
0/150
提交评论