Entropy-and-Free-Energy熵与自由能-课件_第1页
Entropy-and-Free-Energy熵与自由能-课件_第2页
Entropy-and-Free-Energy熵与自由能-课件_第3页
Entropy-and-Free-Energy熵与自由能-课件_第4页
Entropy-and-Free-Energy熵与自由能-课件_第5页
已阅读5页,还剩121页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

EntropyandFreeEnergySpontaneousvs.non-spontaneousthermodynamicsvs.kineticsentropy=randomness(So)Gibbsfreeenergy(Go)

Goforreactions-predictingspontaneousdirection

thermodynamicsofcoupledreactions

GrxnversusGorxn

predictingequilibriumconstantsfromGorxn

1EntropyandFreeEnergySpontaEntropyandFreeEnergyHowcanwepredictifareactioncanoccur,givenenoughtime?Note:ThermodynamicsDOESNOTsayhowquickly(orslowly)areactionwilloccur.Topredictifareactioncanoccuratareasonablerate,oneneedstoconsider:Someprocessesarespontaneous;othersneveroccur.WHY?THERMODYNAMICSKINETICS2EntropyandFreeEnergyHowcanProduct-FavoredReactionse.g.thermitereactionFe2O3(s)+2Al(s) 2Fe(s)+Al2O3(s)DH=-848kJIngeneral,product-favoredreactionsareexothermic.3Product-FavoredReactionse.g.Non-exothermicspontaneousreactionsButmanyspontaneousreactionsorprocessesareendothermic...NH4NO3(s)+heatNH4+(aq)+NO3-(aq)

Hsol=+25.7kJ/molorhaveH=0...4Non-exothermicspontaneousreaPROBABILITY-predictorofmoststablestateWHYDOPROCESSESwithH=0occur?Considerexpansionofgasestoequalpressure:Thisisspontaneousbecausethefinalstate,withequal#moleculesineachflask,ismuchmoreprobablethantheinitialstate,withallmoleculesinflask1,noneinflask2SYSTEMCHANGEStostateofHIGHERPROBABILITYForentropy-drivenreactions-themoreRANDOMstate.5PROBABILITY-predictorofmosGasexpansion-spontaneityfromgreaterprobabilityConsiderdistributionof4moleculesin2flasksP1<P2P1>P2P1=P2Withmoremolecules(>1020)P1=P2ismostprobablebyfar6Gasexpansion-spontaneityfrDirectionalityofReactionsHowprobableisitthatreactantmoleculeswillreact?PROBABILITYsuggeststhataproduct-favoredreactionwillresultinthedispersalofenergy

or

dispersalofmatter

orboth.7DirectionalityofReactionsHowSpontaneousProcessesAprocessthatisspontaneousinonedirectionisnotspontaneousintheoppositedirection.Thedirectionofaspontaneousprocesscandependontemperature:IceturningtowaterisspontaneousatT>0C,WaterturningtoiceisspontaneousatT<0C.8SpontaneousProcessesAprocessStandardEntropies,SoEverysubstanceatagiventemperatureandinaspecificphasehasawell-definedEntropyAt298otheentropyofasubstanceiscalled

So-withUNITSofJ.K-1.mol-1ThelargerthevalueofSo,thegreaterthedegreeofdisorderorrandomnesse.g.So(inJK-1mol-1): Br2(liq)=152.2 Br2(gas)=245.5Foranyprocess:

So=So(final)-So(initial)So(vap.,Br2)=(245.5-152.2)=93.3JK-1mol-19StandardEntropies,SoEverysS(gases)>>S(liquids)>S(solids) So(J/K•mol)H2O(g) 188.8H2O(l) 69.9H2O(s)47.9IceWaterVapourEntropyandPhase10S(gases)>>S(liquids)>Theentropyofasubstanceincreaseswithtemperature.Molecularmotionsdifferenttemps.EntropyandTemperatureHigherTmeans:morerandomnesslargerS11TheentropyofasubstanceincEntropyandcomplexityIncreaseinmolecularcomplexitygenerallyleadstoincreaseinS. So(J/K•mol)CH4 248.2C2H6 336.1C3H8 419.412EntropyandcomplexityIncreaseIonicSolids:Entropydependsonextentofmotionofions.Thisdependsonthestrengthofcoulombicattraction.EntropyofIonicSubstancesEntropyincreaseswhenapureliquidorsoliddissolvesinasolvent.NH4NO3(s)NH4+(aq)+NO3-(aq)Ssol= ionpairs So(J/K•mol)MgO Mg2+/O2- 26.9NaF Na+/F- 51.5So(aq.ions)-So(s) =259.8-151.1 =108.7JK-1mol-113IonicSolids:EntropydependsEntropyChangesforPhaseChangesForaphasechange, DS=q/Twhereq=heattransferredinphasechangeForH2O(liq)--->H2O(g)DH=q=+40,700J/mol14EntropyChangesforPhaseChanTheMolecularInterpretationofEntropy15TheMolecularInterpretationoConsider2H2(g)+O2(g)2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinS

because3molofgasgive2molofliquid.CalculatingSforaReactionDSo=SSo(products)-SSo(reactants)IfSDECREASES,

whyisthisaSPONTANEOUSREACTION??

16Consider2H2(g)+O2(g)2HTheMolecularInterpretationofEntropyEnergyisrequiredtogetamoleculetotranslate,vibrateorrotate.Themoreenergystoredintranslation,vibrationandrotation,thegreaterthedegreesoffreedomandthehighertheentropy.Inaperfectcrystalat0Kthereisnotranslation,rotationorvibrationofmolecules.Therefore,thisisastateofperfectorder.ThirdLawofThermodynamics:theentropyofaperfectcrystalat0Kiszero.Entropychangesdramaticallyataphasechange.17TheMolecularInterpretationoE=q+wTheLawsofThermodynamics0.TwobodiesinthermalequilibriumareatsameT1.Energycanneverbecreatedordestroyed.2.ThetotalentropyoftheUNIVERSE(=systemplussurroundings)MUSTINCREASEineveryspontaneousprocess.STOTAL=Ssystem+Ssurroundings>03.Theentropy(S)ofapure,perfectlycrystallinecompoundatT=0KisZERO.(nodisorder)ST=0=0(perfectxll)18E=q+wTheLawsofThermo2ndLawofThermodynamicsAreactionisspontaneous(product-favored)ifDSfortheuniverseispositive.DSuniverse=DSsystem+DSsurroundingsDSuniverse>0forproduct-favoredprocessFirst,calc.entropycreatedbymatterdispersal(DSsystem)Next,calc.entropycreatedbyenergydispersal(DSsurround)192ndLawofThermodynamicsAreaConsider2H2(g)+O2(g)--->2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+ 1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinSbecause3molofgasgive2molofliquid.CalculatingDSforaReactionDSo=So(products)-So(reactants)20Consider2H2(g)+O2(g)--->2H2(g)+O2(g)--->2H2O(l)DSosystem=-326.9J/K

2ndLawofThermodynamics212H2(g)+O2(g)--->2H2O(l)22H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/K

2ndLawofThermodynamics222H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJ

2ndLawofThermodynamics232H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJ

2ndLawofThermodynamics242H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJDSosurroundings=+1917J/K

2ndLawofThermodynamics252H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(l)DSosystem=-326.9J/KDSosurroundings=+1917J/KDSouniverse=+1590.J/KTheentropyoftheuniverseisincreasing,sothereactionisproduct-favored.2ndLawofThermodynamics262H2(g)+O2(g)--->2H2O(l)22H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KDSosurroundings=+1917J/KDSouniverse=+1590.J/KTheentropyoftheuniverseisincreasing,sothereactionisproduct-favored.

2ndLawofThermodynamics272H2(g)+O2(g)--->2H2O(liqGibbsFreeEnergy,GDSuniv=DSsurr+DSsysGibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDSuniv=DSsurr+DSsysGibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-TGibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-T-TDSuniv=DHsys-TDSsysDSuniv

=

-DHsysT

+

DSsys

GibbsFreeEnergy,GDSuniv=GibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-T-TDSuniv=DHsys-TDSsys-TDSuniv=changeinGibbsfreeenergyfortheuniverse=DGsystemGibbsFreeEnergy,GDSuniv=GibbsFreeEnergy,GDSuniv=DSsurr+DSsysMultiplythroughby-T-TDSuniv=DHsys-TDSsys-TDSuniv=changeinGibbsfreeenergyfortheuniverse=DGuniv=DGsystemUnderstandardconditions—DGo=DHo-TDSoDSuniv

=

-DHsysT

+

DSsys

GibbsFreeEnergy,GDSuniv=DGibbsFreeEnergy,GDGo=DHo-T

DSoGibbsfreeenergychange=DGo=totalenergychangeforsystem -energylostindisorderingthesystemIfreactionisexothermic(DHo<0)andentropyincreases(DSo>0),thenDGo<0,thatis,negativeandreactionproduct-favored.Ifreactionisendothermic(DHo>0),andentropydecreases(DSo<0),thenDGo>0andreactionisreactant-favored.GibbsFreeEnergy,GDGo=DHoGibbsFreeEnergy,G

DGo=DHo-TDSoDHo

DSo

DGoReactionexo(-) increase(+) - Prod-favoredendo(+) decrease(-) + React-favoredexo(-) decrease(-) ? Tdependentendo(+) increase(+) ? TdependentGibbsFreeEnergy,G DGoMethodsofcalculatingGTwomethodsofcalculatingDGoGorxn=S

Gfo(products)-S

Gfo(reactants)DetermineDHorxnandDSorxnanduseGibbsequation.b)Usetabulatedvaluesoffreeenergiesofformation,DGfo.DGo=DHo-TDSo36MethodsofcalculatingGTwomExampleAtwhatTisthefollowingreactionspontaneous?Br2(l)Br2(g)whereDH°=30.91kJ/mol,DS°=93.2J/mol.KAns:DG°=DH°-TDS°37ExampleAtwhatTisthefollowTry298Kjusttosee:DG°=DH°-TDS°DG°=30.91kJ/mol-(298K)(93.2J/mol.K)DG°=(30.91-27.78)kJ/mol=3.13kJ/mol>0Notspontaneousat298KBr2(l)Br2(g)whereDH°=30.91kJ/mol,DS°=93.2J/mol.K38Try298Kjusttosee:DG°=DHExample(cont.)AtwhatTthen?DG°=DH°-TDS°T=DH°/DS°T=(30.91kJ/mol)/(93.2J/mol.K)=0T=331.65K=58.5oC39Example(cont.)AtwhatTthen?CalculatingDG°Inourpreviousexample,weneededtodetermineDH°rxnandDS°rxntodetermineDG°rxnNow,DGisastatefunction;therefore,wecanuseknownDG°todetermineDG°rxnusing:40CalculatingDG°InourpreviousStandardDGofFormation:DGf°LikeDHf°andS°,DGf°isdefinedasthe“changeinfreeenergythataccompaniestheformationof1moleofthatsubstanceforitsconstituentelementswithallreactantsandproductsintheirstandardstate.”LikeDHf°,DGf°=0foranelementinitsstandardstate:Example:DGf°(O2(g))=041StandardDGofFormation:DGfExampleDeterminetheDG°rxnforthefollowing:C2H4(g)+H2O(l)C2H5OH(l)TabulatedDG°ffromtableslikeAppendixD:

DG°f(C2H5OH(l))=-175kJ/mol

DG°f(C2H4(g))=68kJ/mol

DG°f(H2O(l))=-237kJ/mol42ExampleDeterminetheDG°rxnfoExample(cont.)Usingthesevalues:C2H4(g)+H2O(l)C2H5OH(l)DG°rxn=DG°f(C2H5OH(l))–[DG°f(C2H4(g))+DG°f(H2O(l))]DG°rxn=-175kJ–[68kJ+(-237kJ)]DG°rxn=-6kJ<0;therefore,spontaneous43Example(cont.)UsingthesevalMoreDG°CalculationsSimilartoDH°,onecanusetheDG°forvariousreactionstodetermineDG°forthereactionofinterest(a“Hess’Law”forDG°)Example:C(s,diamond)+O2(g)CO2(g)DG°=-397kJC(s,graphite)+O2(g)CO2(g)DG°=-394kJ44MoreDG°CalculationsSimilartMoreDG°Calculations(cont.)C(s,diamond)+O2(g)CO2(g)DG°=-397kJC(s,graphite)+O2(g)CO2(g)DG°=-394kJCO2(g)C(s,graphite)+O2(g)DG°=+394kJC(s,diamond)C(s,graphite)DG°=-3kJDG°rxn<0…..rxnisspontaneous45MoreDG°Calculations(cont.)CDG°rxn≠ReactionRateAlthoughDG°rxncanbeusedtopredictifareactionwillbespontaneousaswritten,itdoesnottellushowfastareactionwillproceed.Example: C(s,diamond)+O2(g)CO2(g)DG°rxn=-397kJButdiamondsareforever….<<0DG°rxn≠rate46DG°rxn≠ReactionRateAlthoughCombustionofacetyleneC2H2(g)+5/2O2(g)-->2CO2(g)+H2O(g)Useenthalpiesofformationtocalculate

DHorxn=-1238kJ<0Usestandardmolarentropiestocalculate

DSorxn=-97.4J/K=-0.0974kJ/K<0DGorxn=-1238kJ-(298K)(-0.0974J/K) =-1209kJ<0Reactionisproduct-favoredinspiteofnegativeDSorxn.Reactionis“enthalpydriven”CalculatingDGCombustionofacetyleneCalculaGoforCOUPLEDCHEMICALREACTIONSReductionofironoxidebyCOisanexampleofusingTWOreactionscoupledtoeachotherinordertodriveathermodynamicallyforbiddenreaction:Fe2O3(s)4Fe(s)+3/2O2(g)DGorxn=+742kJ

3/2C(s)+3/2O2(g)3/2CO2(g)

DGorxn=-592kJwithathermodynamicallyallowedreaction:Overall:Fe2O3(s)+3/2C(s)2Fe(s)+3/2CO2(g)DGorxn=+301kJ25oCBUT

DGorxn<0kJforT>563oCSeeKotz,pp933-935foranalysisofthethermitereaction48GoforCOUPLEDCHEMICALREACTOtherexamplesofcoupledreactions:CoppersmeltingCu2S(s)2Cu(s)+S(s)DGorxn=+86.2kJ (FORBIDDEN)

Couplethiswith:S(s)+O2(g)SO2(s)DGorxn=-300.1kJ

Overall:Cu2S(s)+O2(g)2Cu(s)+SO2(s)

DGorxn=+86.2kJ+-300.1kJ=-213.9kJ(ALLOWED)CoupledreactionsVERYCOMMONinBiochemistry:e.g. allbio-synthesisdrivenby ATPADPforwhich

DHorxn=-20kJ

DSorxn=+34J/K

DGorxn=-30kJ37oC49OtherexamplesofcoupledreacTheConcentration

DependenceofSpontaneityAswithH°andS°,G°valueshavebeentabulatedforthestandardstateveryfewreactionsoccuratstandardconditionsnotingthatHandSchangeverylittlewithchangingT,wecanmaketheassumption50TheConcentration

DependenceTheConcentration

DependenceofSpontaneityThisworksforchangesinT,butGwillchangesignificantlywithchangingconcentrationand/orpressureForanyreactionaA+bBcC+dD51TheConcentration

Dependence5252TheConcentration

DependenceofSpontaneityOnepossiblesourceofacidrainisthereactionbetweenNO2,apollutantfromautomobileexhausts,andwater.3NO2(g)+H2O(l)2HNO3(g)+NO(g) Determinewhetherthisisthermodynamicallyfeasible(a)understandardconditionsand(b)at298K,witheachproductgaspresentatP=1.0010-6atm.Given:

G°f(NO2(g))=51.3kJ/mol

G°f(H2O(l))=-237.1kJ/mol

G°f(HNO3(g))=-73.5kJ/mol

G°f(NO(g))=87.6kJ/mol53TheConcentration

Dependence5454TheTemperature

DependenceofSpontaneityG=H-TS55TheTemperature

DependenceofBioenergeticsThebasicprocessesoflifecanbethoughtofasmakingorderoutofdisorderThisseemstogoagainstthesecondlawTocreateorder,systemsmustreleaseheattothesurroundingsLivingsystemsuselargeamountsofenergytosurvivemostcommonenergysourcesarecarbohydratesandfats56BioenergeticsThebasicprocessBioenergeticsThereactionofglucosewithoxygenishighlyspontaneousC6H12O6+6O2

6CO2+6H2OG°=-2870kJ/mol

asistheoxidationofpalmiticacidC15H31COOH+23O216CO2+16H2OG°=-9790kJ/mol57BioenergeticsThereactionofgBioenergeticsThesereactionsreleasetoomuchenergyforacelltohandlesomeoftheenergymustbestoredstoredbyconvertingADPtoATP:ADP+H3PO4ATP+H2OG°=30.6kJ/mol58BioenergeticsThesereactionsrBioenergeticsCellsuseenergystoredinATPtodrivenonspontaneousreactionsATP+H2OADP+H3PO4G°=-30.6kJ/molATPconversioncanbecoupledtootherreactionstransfersenergyfromonereactiontoanotherAminoAcidsynthesis59BioenergeticsCellsuseenergyBioenergeticsglutamicacid+NH3glutamine+H2OG°=14+kJ/molATP+H2OADP+H3PO4G°=-30.6kJ/molglutamicacid+NH3+ATPglutamine+ADP+H3PO4G°=-16.6kJ/mol60Bioenergeticsglutamicacid+NBioenergeticsCellsarenot100%efficientinstoringenergyasATP1glucosemoleculeproduces36ATPmoleculesC6H12O6+6O26CO2+6H2OG°=-2870kJ/mol36ADP+36H3PO436ATP+36H2OG°=1102kJ/molC6H12O6+6O2+36ADP+36H3PO46CO2+6H2O+36ATP+36H2OG°=-1768kJ/mol38%ATP,62%asHEAT61BioenergeticsCellsarenot100Extraslides62Extraslides62ThermodynamicsandKeqKeqisrelatedtoreactionfavorability.IfDGorxn<0,reactionisproduct-favored.

DGorxnisthechangeinfreeenergyasreactantsconvertcompletelytoproducts.Butsystemsoftenreachastateofequilibriuminwhichreactantshavenotconvertedcompletelytoproducts.Howtodescribethermodynamically?63ThermodynamicsandKeqKeqisrGrxnversusGorxn

Underanyconditionofareactingsystem,wecandefineGrxnintermsoftheREACTIONQUOTIENT,QGrxn=

Gorxn+RTlnQAtequilibrium,Grxn=0.Also,Q=K.ThusIfGrxn<0thenreactionproceedstorightIfGrxn>0thenreactionproceedstoleftDGorxn=-RTlnK64GrxnversusGorxnUnderany2NO2

N2O4

DGorxn=-4.8kJpureNO2hasDGrxn<0.ReactionproceedsuntilDGrxn=0-theminimuminG(reaction)-seegraph.Atthispoint,bothN2O4andNO2arepresent,withmoreN2O4.Thisisaproduct-favoredreaction.ThermodynamicsandKeq(2)652NO2N2O4ThermodynamicsanN2O4

2NO2

DGorxn=+4.8kJpureN2O4hasDGrxn<0.ReactionproceedsuntilDGrxn=0-theminimuminG(reaction)-seegraph.Atthispoint,bothN2O4andNO2arepresent,withmoreNO2.Thisisareactant-favoredreaction.ThermodynamicsandKeq(3)66N2O42NO2 DGorxn=+4.8ThermodynamicsandKeq(4)KeqisrelatedtoreactionfavorabilityandsotoDGorxn.ThelargerthevalueofDGorxnthelargerthevalueofK.DGorxn=-RTlnKwhereR=8.31J/K•mol67ThermodynamicsandKeq(4)KeqCalculateKforthereactionN2O42NO2

DGorxn=+4.8kJDGorxn=+4800J=-(8.31J/K)(298K)lnKDGorxn=-RTlnKThermodynamicsandKeq(5)WhenGorxn>0,thenK<1-reactantfavouredWhenGorxn<0,thenK>1-productfavouredK=0.1468CalculateKforthereactionDGEntropyandFreeEnergy

Spontaneousvs.non-spontaneousthermodynamicsvs.kineticsentropy=randomness(So)Gibbsfreeenergy(Go)

Goforreactions-predictingspontaneousdirection

thermodynamicsofcoupledreactions

GrxnversusGorxn

predictingequilibriumconstantsfromGorxn

69EntropyandFreeEnergy

SponEntropyandFreeEnergySpontaneousvs.non-spontaneousthermodynamicsvs.kineticsentropy=randomness(So)Gibbsfreeenergy(Go)

Goforreactions-predictingspontaneousdirection

thermodynamicsofcoupledreactions

GrxnversusGorxn

predictingequilibriumconstantsfromGorxn

70EntropyandFreeEnergySpontaEntropyandFreeEnergyHowcanwepredictifareactioncanoccur,givenenoughtime?Note:ThermodynamicsDOESNOTsayhowquickly(orslowly)areactionwilloccur.Topredictifareactioncanoccuratareasonablerate,oneneedstoconsider:Someprocessesarespontaneous;othersneveroccur.WHY?THERMODYNAMICSKINETICS71EntropyandFreeEnergyHowcanProduct-FavoredReactionse.g.thermitereactionFe2O3(s)+2Al(s) 2Fe(s)+Al2O3(s)DH=-848kJIngeneral,product-favoredreactionsareexothermic.72Product-FavoredReactionse.g.Non-exothermicspontaneousreactionsButmanyspontaneousreactionsorprocessesareendothermic...NH4NO3(s)+heatNH4+(aq)+NO3-(aq)

Hsol=+25.7kJ/molorhaveH=0...73Non-exothermicspontaneousreaPROBABILITY-predictorofmoststablestateWHYDOPROCESSESwithH=0occur?Considerexpansionofgasestoequalpressure:Thisisspontaneousbecausethefinalstate,withequal#moleculesineachflask,ismuchmoreprobablethantheinitialstate,withallmoleculesinflask1,noneinflask2SYSTEMCHANGEStostateofHIGHERPROBABILITYForentropy-drivenreactions-themoreRANDOMstate.74PROBABILITY-predictorofmosGasexpansion-spontaneityfromgreaterprobabilityConsiderdistributionof4moleculesin2flasksP1<P2P1>P2P1=P2Withmoremolecules(>1020)P1=P2ismostprobablebyfar75Gasexpansion-spontaneityfrDirectionalityofReactionsHowprobableisitthatreactantmoleculeswillreact?PROBABILITYsuggeststhataproduct-favoredreactionwillresultinthedispersalofenergy

or

dispersalofmatter

orboth.76DirectionalityofReactionsHowSpontaneousProcessesAprocessthatisspontaneousinonedirectionisnotspontaneousintheoppositedirection.Thedirectionofaspontaneousprocesscandependontemperature:IceturningtowaterisspontaneousatT>0C,WaterturningtoiceisspontaneousatT<0C.77SpontaneousProcessesAprocessStandardEntropies,SoEverysubstanceatagiventemperatureandinaspecificphasehasawell-definedEntropyAt298otheentropyofasubstanceiscalled

So-withUNITSofJ.K-1.mol-1ThelargerthevalueofSo,thegreaterthedegreeofdisorderorrandomnesse.g.So(inJK-1mol-1): Br2(liq)=152.2 Br2(gas)=245.5Foranyprocess:

So=So(final)-So(initial)So(vap.,Br2)=(245.5-152.2)=93.3JK-1mol-178StandardEntropies,SoEverysS(gases)>>S(liquids)>S(solids) So(J/K•mol)H2O(g) 188.8H2O(l) 69.9H2O(s)47.9IceWaterVapourEntropyandPhase79S(gases)>>S(liquids)>Theentropyofasubstanceincreaseswithtemperature.Molecularmotionsdifferenttemps.EntropyandTemperatureHigherTmeans:morerandomnesslargerS80TheentropyofasubstanceincEntropyandcomplexityIncreaseinmolecularcomplexitygenerallyleadstoincreaseinS. So(J/K•mol)CH4 248.2C2H6 336.1C3H8 419.481EntropyandcomplexityIncreaseIonicSolids:Entropydependsonextentofmotionofions.Thisdependsonthestrengthofcoulombicattraction.EntropyofIonicSubstancesEntropyincreaseswhenapureliquidorsoliddissolvesinasolvent.NH4NO3(s)NH4+(aq)+NO3-(aq)Ssol= ionpairs So(J/K•mol)MgO Mg2+/O2- 26.9NaF Na+/F- 51.5So(aq.ions)-So(s) =259.8-151.1 =108.7JK-1mol-182IonicSolids:EntropydependsEntropyChangesforPhaseChangesForaphasechange, DS=q/Twhereq=heattransferredinphasechangeForH2O(liq)--->H2O(g)DH=q=+40,700J/mol83EntropyChangesforPhaseChanTheMolecularInterpretationofEntropy84TheMolecularInterpretationoConsider2H2(g)+O2(g)2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinS

because3molofgasgive2molofliquid.CalculatingSforaReactionDSo=SSo(products)-SSo(reactants)IfSDECREASES,

whyisthisaSPONTANEOUSREACTION??

85Consider2H2(g)+O2(g)2HTheMolecularInterpretationofEntropyEnergyisrequiredtogetamoleculetotranslate,vibrateorrotate.Themoreenergystoredintranslation,vibrationandrotation,thegreaterthedegreesoffreedomandthehighertheentropy.Inaperfectcrystalat0Kthereisnotranslation,rotationorvibrationofmolecules.Therefore,thisisastateofperfectorder.ThirdLawofThermodynamics:theentropyofaperfectcrystalat0Kiszero.Entropychangesdramaticallyataphasechange.86TheMolecularInterpretationoE=q+wTheLawsofThermodynamics0.TwobodiesinthermalequilibriumareatsameT1.Energycanneverbecreatedordestroyed.2.ThetotalentropyoftheUNIVERSE(=systemplussurroundings)MUSTINCREASEineveryspontaneousprocess.STOTAL=Ssystem+Ssurroundings>03.Theentropy(S)ofapure,perfectlycrystallinecompoundatT=0KisZERO.(nodisorder)ST=0=0(perfectxll)87E=q+wTheLawsofThermo2ndLawofThermodynamicsAreactionisspontaneous(product-favored)ifDSfortheuniverseispositive.DSuniverse=DSsystem+DSsurroundingsDSuniverse>0forproduct-favoredprocessFirst,calc.entropycreatedbymatterdispersal(DSsystem)Next,calc.entropycreatedbyenergydispersal(DSsurround)882ndLawofThermodynamicsAreaConsider2H2(g)+O2(g)--->2H2O(l)DSo=2So(H2O)-[2So(H2)+So(O2)]DSo=2mol(69.9J/K•mol)- [2mol(130.7J/K•mol)+ 1mol(205.3J/K•mol)]DSo=-326.9J/KNotethatthereisadecreaseinSbecause3molofgasgive2molofliquid.CalculatingDSforaReactionDSo=So(products)-So(reactants)89Consider2H2(g)+O2(g)--->2H2(g)+O2(g)--->2H2O(l)DSosystem=-326.9J/K

2ndLawofThermodynamics902H2(g)+O2(g)--->2H2O(l)22H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/K

2ndLawofThermodynamics912H2(g)+O2(g)--->2H2O(liq2H2(g)+O2(g)--->2H2O(liq)DSosystem=-326.9J/KCancalc.thatDHorxn=DHosystem=-571.7kJ

2ndLa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论