2022-2023学年广东省韶关市名校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年广东省韶关市名校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年广东省韶关市名校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年广东省韶关市名校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年广东省韶关市名校八年级数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>22.如图所示,在中,,平分,交于点D,,,DE⊥AB,则()A. B. C. D.3.已知两条线段a=2cm,b=3.5cm,下列线段中能和a,b构成三角形的是()A.5.5cm B.3.5cm C.1.3cm D.1.5cm4.若,则下列式子错误的是()A. B. C. D.5.计算的结果是()A. B. C. D.6.的相反数是()A. B. C. D.7.将一副常规的三角尺按如图方式放置,则图中∠1的度数为()A.95° B.100° C.105° D.115°8.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°9.将0.000000517用科学记数法可表示为()A. B. C. D.10.一副三角板有两个直角三角形,如图叠放在一起,则的度数是()A.165° B.120° C.150° D.135°11.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. B.C. D.12.如图所示,四边形是边长为的正方形,,则数轴上点所表示的数是()A. B. C. D.二、填空题(每题4分,共24分)13.根据,,,…的规律,则可以得出…的末位数字是________.14.如图,△ABC的面积为11cm1,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是_____cm1.15.的相反数是__________.16.使分式有意义的x的取值范围是_____.17.多项式分解因式的结果是____.18.已知:实数m,n满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________.三、解答题(共78分)19.(8分)(1)计算:(2)先化简,后求值:;其中20.(8分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.21.(8分)如图,四边形中,.动点从点出发,以的速度向点移动,设移动的时间为秒.(1)当为何值时,点在线段的垂直平分线上?(2)在(1)的条件下,判断与的位置关系,并说明理由.22.(10分)在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.23.(10分)在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.24.(10分)小张和同学相约“五一”节到离家2400米的电影院看电影,到电影院后,发现电影票忘带了,此时离电影开始还有25分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回电影院,已知小张骑车的时间比跑步的时间少用了4分钟,骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了6分钟,他能否在电影开始前赶到电影院?说明理由.25.(12分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.26.已知,是等边三角形,、、分别是、、上一点,且.(1)如图1,若,求;(2)如图2,连接,若,求证:.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:∵一次函数y=mx+n-1的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n-1>0,∴n>1.故选D.考点:一次函数图象与系数的关系.2、C【分析】根据线段的和差即可求得DC,再根据角平分线的性质即可得出DE=DC.【详解】解:∵,,∴,∵,平分,DE⊥AB,∴DE=DC=6cm.故选:C.【点睛】本题考查角平分线的性质.角平分线上的点到角两边距离相等.3、B【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】根据三角形的三边关系,得:第三边应>两边之差,即3.5−2=1.5cm;而<两边之和,即3.5+2=5.5cm.所给的答案中,只有3.5cm符合条件.故选:B.【点睛】此题考查了三角形三边关系.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.4、B【分析】根据不等式的基本性质逐一判断即可.【详解】A.将不等式的两边同时减去3,可得,故本选项正确;B.将不等式的两边同时乘(-1),可得,再将不等式的两边同时加3,可得,故本选项错误;C.将不等式的两边同时加2,可得,所以,故本选项正确;D.将不等式的两边同时除以3,可得,故本选项正确.故选B.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.5、A【分析】把分子与分母能因式分解的先进行因式分解,然后再约分即可得到答案.【详解】.故选:A.【点睛】此题主要考查了分的乘法运算,正确掌握分式的基本性质是解题的关键.6、B【分析】根据相反数的意义,可得答案.【详解】解:的相反数是-,故选B.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.7、C【分析】根据题意求出∠BCO,再根据三角形的外角的性质计算即可.【详解】如图,由题意得:∠BCO=∠ACB﹣∠ACD=60°-45°=15°,∴∠1=∠B+∠BCO=90°+15°=105°.故选C.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解答本题的关键.8、C【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=∠ACE,∠2=∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=∠A=25°.故选C.9、A【分析】由题意根据科学记数法的表示方法,进行分析表示即可.【详解】解:0.000000517=.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、A【分析】先根据直角三角形两锐角互余求出∠1,再由邻补角的定义求得∠2的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求得的度数.【详解】∵图中是一副三角板,∴∠1=45°,∴∠2=180°-∠1=180°-45°=135°,∴=∠2+30°=135°+30°=165°.故选A.【点睛】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.11、B【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间-实际所用时间=2,列出方程即可.【详解】设原计划每天施工x米,则实际每天施工(x+50)米,

根据题意,可列方程:=2,

故选B.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列出方程.12、D【分析】连接AC,根据勾股定理求出其长度,,再减1求相反数即为点P表示的数.【详解】解:如图,连接AC,在中,,所以,所以,所以点表示的数为.故选:D.【点睛】本题主要考查在数轴上用勾股定理求无理数长度的线段,熟练掌握该方法是解答关键.二、填空题(每题4分,共24分)13、1【分析】根据题中规律,得出…=,再根据的末位数字的规律得出答案即可.【详解】解:∵(2-1)(…)=,∴…=,又∵,末位数字为1;,末位数字为3;,末位数字为7;,末位数字为1;,末位数字为1;,末位数字为3,……可发现末尾数字是以4个一次循环,∵,∴的末位数字是1,故答案为1.【点睛】本题考查了乘法公式中的规律探究问题,根据题中的等式找出规律是解题的关键.14、2.【分析】延长CD交AB于E,依据△ACD≌△AED,即可得到CD=ED,进而得到S△BCD=S△BED,S△ACD=S△AED,据此可得S△ABD=S△AED+S△BED=S△ABC.【详解】解:如图所示,延长CD交AB于E,由题可得,AP平分∠BAC,∴∠CAD=∠EAD,又∵CD⊥AP,∴∠ADC=∠ADE=90°,又∵AD=AD,∴△ACD≌△AED(ASA),∴CD=ED,∴S△BCD=S△BED,S△ACD=S△AED,∴S△ABD=S△AED+S△BED=S△ABC=×11=2(cm1),故答案为:2.【点睛】本题考查的是作图−基本作图以及角平分线的定义,熟知角平分线的作法是解答此题的关键.15、-【分析】只有符号不同的两个数,我们称这两个数互为相反数.【详解】解:的相反数为-.故答案为:-.【点睛】本题主要考查的是相反数的定义,属于基础题型.解决这个问题只要明确相反数的定义即可.16、x≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【详解】解:∵分式有意义,∴x+1≠0,故x≠﹣1.故答案为:x≠﹣1.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.17、【分析】先提取公因式a,再利用平方差公式()因式分解即可.【详解】解:.故答案为:.【点睛】本题考查综合运用提公因式法和公式法因式分解.一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.18、1【分析】根据多项式乘以多项式的法则展开,再代入计算即可.【详解】∵m+n=3,mn=2,∴(1+m)(1+n)=1+n+m+mn=1+3+2=1.故答案为:1.【点睛】本题考查了多项式乘以多项式,掌握多项式乘以多项式的法则是解答本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.三、解答题(共78分)19、(1);(2),【分析】(1)分式除法,先进行因式分解,然后再将除法转化成乘法进行计算;(2)分式的混合运算,先做小括号里的异分母分式减法,要进行通分,能进行因式分解的先进行因式分解,然后做除法,最后代入求值.【详解】(1);(2)原式,当时,原式.【点睛】本题考查分式的混合运算,掌握因式分解的技巧,运算顺序,正确计算是解题关键.20、(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.21、(1)当x=5时,点E在线段CD的垂直平分线上;(2)DE与CE的位置关系是DE⊥CE,理由见解析【分析】(1)根据垂直平分线的性质得出DE=CE,利用勾股定理得出,然后建立方程求解即可(2)根据第(1)问的结果,易证△ADE≌△BEC,根据全等三角形的性质有∠ADE=∠CEB,再通过等量代换可得∠AED+∠CEB=90°,进而求出∠DEC=90°,则可说明DE⊥CE.【详解】解:(1)∵点E在线段CD的垂直平分线上,∴DE=CE,∵∠A=∠B=90°解得∴当x=5时,点E在线段CD的垂直平分线上(2)DE与CE的位置关系是DE⊥CE;理由是:当x=5时,AE=2×5cm=10cm=BC,∵AB=25cm,DA=15cm,CB=10cm,∴BE=AD=15cm,在△ADE和△BEC中,∴△ADE≌△BEC(SAS),∴∠ADE=∠CEB,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠AED+∠CEB=90°,∴∠DEC=180°-(∠AED+∠CEB)=90°,∴DE⊥CE.【点睛】本题主要考查勾股定理和全等三角形的判定及性质,掌握勾股定理和全等三角形的判定及性质是解题的关键.22、(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.

(2)根据加权平均数的公式可以计算出平均数;

(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,=3次,∴这组数据的中位数是3次;故答案为:3,4.(2)观察条形统计图,可知这组样本数据的平均数:=3.3次,则这组样本数据的平均数是3.3次.(3)1000×=360(人)∴该校学生共参加4次活动约为360人.【点睛】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解题的关键.23、(1)见解析;(2)4【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【详解】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.【点睛】此题主要考查等腰三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质及等腰三角形的性质.24、(1)小张跑步的平均速度为1米/分;(2)小张不能在电影开始前赶到电影院.【分析】(1)设小张跑步的平均速度为x米/分,用含x的式子表示骑车的时间和跑步的时间,根据骑车的时间比跑步的时间少用了4分钟列方程;(2)计算出骑车的时间,跑步的时间及找票的时间的和,与25分钟作比较.【详解】(1)设小张跑步的平均速度为x米/分,依题意得=4,解得x=1.经检验,x=1是原方程的根答:小张跑步的平均速度为1米/分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论