版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
此课件下载后可自行编辑修改关注我每天分享干货小学数学思想方法1此课件下载后可自行编辑修改小学数学思想方法1真正的教育是将在学校所学的知识全忘掉,所剩下的。
——陶行知2真正的教育是将在学校所学的知识全忘掉,所剩下的。2
在学生的脑力劳动中,摆在第一位的并不是背书,而是让学生本人进行思考。背书会使人变傻。
——苏霍姆林斯基3在学生的脑力劳动中,摆在第一位的并不是背书,而
数学思想是数学学科发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓,内涵十分丰富。4数学思想是数学学科发生、发展的根本,是探索研究
数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中。
高考考试大纲的说明5数学思想和方法是数学知识在更高层次上的抽象和概括,它不懂得数学思想方法的数学教师不是一个称职的教师。
——徐利治6不懂得数学思想方法的数学教师不是一个称职的教师。6
数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
7数学思想和数学方法既有区别又有密切联系。数学思想一、符号化思想二、化归思想三、模型思想四、数形结合思想五、推理思想六、方程和函数思想七、几何变换思想八、分类讨论思想九、统计思想
十、分析法和综合法十一、概率思想十二、反证法十三、集合思想十四、极限思想十五、假设法十六、运筹思想
8一、符号化思想九、统计思想8一、符号化思想1、符号化思想的应用。第一,能从具体情境中抽象出数量关系和变化规律,并用符号表示。如:a+b=b+a
第二,理解符号所代表的数量关系和变化规律。第三,会进行符号间的转换。第四,能选择适当的程序和方法解决用符号所表示的问题。9一、符号化思想9用符号表示变化规律。数列的变化规律:1,2,3,5,8,…图形的变化规律。一、符号化思想1、符号化思想的应用。10用符号表示变化规律。一、符号化思想102、符号化思想的教学。①②③④⑤⑥“垂直与平行”
112、符号化思想的教学。①②③a∥b或者b∥a12a∥b或者b∥a12①②③④⑤⑥a⊥b或者b⊥a13①②③④
二、化归思想化归(转化)思想从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。化归思想也是攻克各种复杂问题的法宝之一。1、化归思想的具体应用。14二、化归思想1、化归思想的具体应用。14
二、化归思想2、教学中的化归策略。15二、化归思想15
1616
1717
(1)下图是平行四边形停车位,它的面积是()。A.7.5×4B.7.5×6C.6×4
18(1)下图是平行四边形停车位,它的面积是(
王老师在教学时,用木条制成一个长方形框教具,木条长18厘米,宽15厘米。它的周长和面积各是多少?如果把它拉成平行四边形,周长和面积会怎样?
19王老师在教学时,用木条制成一个长方形框教具,木高底下底上底高平行四边形的面积=底×高高底三角形的面积=底×高÷2高上底梯形的面积=(上底+下底)×高÷212320高底下底上底高平行四边形的面积=底×高高底三角形的面积
图1图221图1图221案例1:+++……=
解决问题中的化归策略。(1)化抽象问题为直观问题。122案例1:+++……=解决
解决问题中的化归策略。(2)化繁为简的策略。四年级(下册)第117---118页例1《植树问题》。例1:同学们要在全长100米的小路一边植树,每隔5米种一棵树(两端要栽)。一共需要多少棵树苗?23解决问题中的化归策略。(2)化繁为简的策略。四年级
解决问题中的化归策略。(2)化繁为简的策略。全长间隔长度研究方法(线段图)间隔段数棵数5米5米1210米5米2315米5米34……发现:棵数=间隔数+1间隔数=棵数-1
24解决问题中的化归策略。(2)化繁为简的策略。全长间
解决问题中的化归策略。(2)化繁为简的策略。全长间隔长度研究方法(线段图)间隔段数棵数5米5米1210米5米2315米5米34……发现:棵数=间隔数+1间隔数=棵数-1
25解决问题中的化归策略。(2)化繁为简的策略。全长间
解决问题中的化归策略。(2)化繁为简的策略。把186拆分成93和93,93和93的乘积最大,乘积为8649。
案例2:把186拆分成两个自然数的和,怎样拆分才能使拆分后的两个自然数的乘积最大?187呢?26解决问题中的化归策略。(2)化繁为简的策略。把18
(2)化繁为简的策略。案例3:你能快速口算85×85=,95×95=,105×105=吗?个位数是5的相等的两个数的乘积分为左右两部分:左边为因数中5以外的数字乘比它大1的数,右边为25(5乘5的积)。所以85×85=7225,95×95=9025,105×105=1102527(2)化繁为简的策略。个位数是5的相等的两个数的乘
解决问题中的化归策略。(3)化实际问题为特殊的数学问题。假设都是上山,那么总路程是18(6×3)千米,比实际路程少算了2千米,所以,上山时间是4小时。上山和下山的路程分别是12千米和8千米。案例1:某旅行团队翻越一座山。上午9时上山,每小时行3千米,到达山顶时休息1小时。下山时,每小时行4千米,下午4时到达山底。全程共行了20千米。上山和下山的路程各是多少千米?28解决问题中的化归策略。假设都是上山,
案例2:李阿姨买了2千克苹果和3千克香蕉用了11元,王阿姨买了同样价格的1千克苹果和2千克香蕉,用了6.5元。每千克苹果和香蕉各多少钱?解决问题中的化归策略。(3)化实际问题为特殊的数学问题。直接分析:1千克苹果和2千克香蕉6.5元,那么可得出2千克苹果和4千克香蕉13元;题中已知2千克苹果和3千克香蕉11元。用13减去11得2,所以香蕉的单价是每千克2元。再通过计算得苹果的单价是每千克2.5元。29案例2:李阿姨买了2千克苹果和3千克香蕉用了1
变式:
1、水果商店昨天销售的苹果比香蕉的2倍少30千克,这两种水果一共销售了180千克。销售苹果多少千克?
2、水果商店昨天销售的香蕉比苹果的多30千克,这两种水果一共销售了180千克。销售苹果多少千克?
3、水果商店昨天销售的苹果是香蕉的2倍,销售的梨是香蕉的3倍。这三种水果一共销售了180千克。销售香蕉多少千克?
4、水果商店昨天销售的苹果是香蕉的2倍,销售的梨是苹果的2倍。这三种水果一共销售了210千克。销售香蕉多少千克?(4)化未知问题为已知问题。案例1:水果商店昨天销售的苹果比香蕉的2倍多30千克,这两种水果一共销售了180千克。销售香蕉多少千克?30变式:(4)化未知问题为已知问题。案例1:水果期末测试体现转化数学思想的题目:1、如下图,在推倒平行四边形面积公式的过程中,这一过程体现了()数学思想。这一思想为后面学习三角形面积、梯形面积奠定基础。31期末测试体现转化数学思想的题目:312、“转化”是一种常见的解决问题的方法。如下图,把一个半圆分成若干份,剪开后拼成一个近似的长方形,这两个图形()。
A、面积相等,周长也相等
B、面积相等,周长不相等
C、面积不相等,周长也不相等322、“转化”是一种常见的解决问题的方法。如下图,把一个半圆分3、在小数除法中,如:要把这两个小数变成整数才能进行计算,把小数变成整数这一过程运用了()的思想方法。333、在小数除法中,如:要把这两个小数变成整数三、模型思想1、模型思想的具体应用。2、模型思想的教学。34三、模型思想2、模型思想的教学。34
235235第一,学习的过程可以经历类似于数学家建模的再创造过程。《长方体的认识》①量一量;②比一比;③找一找;④折一折。36第一,学习的过程可以经历类似于数学家建模的再创造过程。《长小棒根数摆几个□剩几根小棒列式
8□□8÷4=2
9□□9÷4=2……1
10□□10÷4=2……2
11□□11÷4=2……3
12□□□12÷4=3
13□□□13÷4=3……1……二年级下册《余数与除数的关系》结论:余数都比除数小。
37小棒根数摆几个□剩几根小棒列式8□□8÷4=2
第三,应用已有的数学知识分析数量关系和空间形式,经过抽象建立模型,进而解决各种问题。第二,对于大多数人来说,在现实生活和工作中利用数学解决各种问题,基本上都是根据对现实情境的分析,利用已有的数学知识构建模型。38第三,应用已有的数学知识分析数量关系和空间形式
案例1:小明的家距离学校600米,每天上学从家步行10分钟到学校。今天早晨出门2分钟后发现忘记带文具盒,立即回家去取。他如果想按原来的时间赶到学校,他从回家再到学校,步行的速度应是多少?(取东西的时间忽略不计)5米跳绳的根数12342米跳绳的根数7520剩余米数1010案例2:有一根20米长的绳子,要剪成2米和5米长两种规格的跳绳,每种跳绳各剪多少根?(要求绳子无剩余,并且每种规格的跳绳至少要有一根。)39案例1:小明的家距离学校600米,每
案例3:一瓶矿泉水满瓶水为500毫升,小林喝了一些,剩余的水都在圆柱形的部分,高度是16厘米。如果把瓶盖拧紧,倒立过来,无水的部分高度是4厘米。小林喝了多少水?
设小林喝的水为v毫升,列式为:v:500=4:(16+4)v=100。40案例3:一瓶矿泉水满瓶水为500毫升,小林喝了四、数形结合思想
“数缺形时少直觉,形少数时难入微。”
——华罗庚
数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。
41四、数形结合思想41四、数形结合思想1、数形结合思想的具体应用。数形结合思想主要体现:一是利用“形”作为各种直观工具帮助学生理解和掌握知识、解决问题。二是数轴及平面直角坐标系在小学的渗透。三是统计图本身和几何概念模型都是数形结合思想的体现。四是用代数(算术)方法解决几何问题。
42四、数形结合思想42四、数形结合思想1、数形结合思想的具体应用。
(1)数的表示和运算。数和运算的实物化、图形化和操作化,便于人们直观理解数和计算。摆小棒、画图形等。43四、数形结合思想(1)数的表示和运算。43
4444
(2)解决问题中的形。①画线段图表示数量关系。
案例:五上列方程解决问题上海浦东中银大厦的总高度为258米,比上海国际饭店的3倍还高24米,上海国际饭店高多少米?设上海国际饭店的高度为x米,易于找等量关系和理解逆向思考的数量关系。上海国际饭店浦东中银大厦45(2)解决问题中的形。设上海国际饭店的高度为x米,易于找
利用画图来直观呈现各种信息,有利于学生分析数量关系。46利用画图来直观呈现各种信息,46
利用画图来直观呈现各种信息,有利于学生理解算式。47利用画图来直观呈现各种信息,有利于学生理解算式。47
②解决问题的直观策略。48②解决问题的直观策略。48
4949
③利用坐标系中的图像直观理解正比例关系。50③利用坐标系中的图像50
(3)统计中的图形。①各种统计图表。51(3)统计中的图形。51
(4)空间与图形中的数。①图形的周长、面积和体积公式。52(4)空间与图形中的数。52
②图形中边之间的关系。53②图形中边之间的关系。53
③图形变换中的数。坐标与变换
54③图形变换中的数。54(一)创设情境,提出问题买回200本书。有2个书架,方法一:先算:平均每个书架放多少本?200÷2=100(本)再算:平均每层放多少本?100÷5=20(本)200本2、数形结合思想的教学。55(一)创设情境,提出问题买回200本书。有2个书架,方法一:方法二:先算:两个书架一共用几层?5×2=10(层)再算:平均每层放多少本?200÷10=20(本)200本方法三:先算:两个书架1层放多少本书?200÷5=40(本)再算:平均每层放几本书?40÷2=20(本)200本56方法二:200本方法三:200本565757方法二:180÷(3×2)=30(人)方法一:180÷2÷3=30(人)58方法二:180÷(3×2)=30(人)方法一:180÷2÷3四、数形结合思想2、数形结合思想的教学。第一,如何正确理解数形结合思想。
59四、数形结合思想59案例1:++++…=
160案例1:++++…=160
第二,适当拓展数形结合思想的应用。案例2:把两个形状和大小相同的长方体月饼盒包装成一包,怎样包装最省包装纸?
假设长方体的长、宽、高分别为a、b、c,并且a>b>c(只要给出三个数的大小顺序便可,谁大谁小并不影响用代数方法计算的过程和结论)。根据已知条件可知,ab>ac>bc,所以把最大的两个侧面贴在一起包装最省包装纸。列成公式为:S=4(ab+bc+ac)-2ab。
61第二,适当拓展数形结合思想的应用。假设长方体的长、宽、
五、推理思想对称性关系推理反对称性关系推理类比推理演绎推理合情推理三段论选言推理关系推理如:一切奇数都不能被2整除,(2³+1)是奇数,(2³+1)不能被2整除。一个三角形不是锐角三角形和直角三角形,它是钝角三角形。传递性关系推理1米=100厘米,所以100厘米=1米a大于b,所以b不大于a。a>b,b>c,所以a>c。归纳推理推理62五、推理思想对称性关系推理反对称性关系推理类比1、推理思想的具体应用。631、推理思想的具体应用。63锐角比直角小,钝角比直角大,也就是直角比钝角小;可进一步引导学生思考,锐角和钝角比,哪个大?学生在一年级已经知道了29>26,26>23,所以29>23的推理方法,自然地可以把这种推理方法迁移至此。64锐角比直角小,钝角比直角大,也就是直角比钝角小;可进一步引导二年级上册第80页例4中的9的乘法口诀,这是归纳推理。
65二年级上册第80页例4中的9的乘法口诀,这是归纳推理。66666有一箱苹果,3个3个地数多1个,4个4个地数多1个,5个5个地数多1个。问这箱苹果至少有多少个?有一箱苹果,3个3个地数少1个,4个4个地数少2个,5个5个地数少3个。问这箱苹果至少有多少个?67有一箱苹果,3个3个地数多1个,4个4个地数多1个,5个5个2、推理思想的教学。推理思想在小学数学教学中要注意把握以下几点:第一,推理是重要的思想方法之一,是数学的基本思维方式,要贯穿于数学教学的始终。第二,合情推理和演绎推理二者不可偏废。第三,推理能力的培养与四大内容领域的教学要有机地结合。第四,把握好推理思想教学的层次性和差异性。
682、推理思想的教学。推理思想在小学数学教学中要注意把握以下几
学习“8的乘法口诀”时,便可联系“6、7的乘法口诀”提出问题:8的乘法口诀有几句?怎样推导出8的乘法口诀?前后各句口诀之间有什么规律?(1)类比思想。
在初中代数中,与整数的运算顺序和运算定律相类比,可以导出有理数和整式的运算顺序和运算定律;与分数的基本性质相类比,可以导出分式也具有类似的性质,并且可以推出它和分数一样能够进行化简和运算。
69学习“8的乘法口诀”时,便可联系“6、7的乘法口诀期末测试中体现数学活动经验(类比思想)的题目:学生在计算16+8=24时,总结出了加法计算法则,它在学习()时又一次使用了,这种方法能保证学生计算准确。这种数学活动经验要注意积累呦!
(1)类比思想。
70期末测试中体现数学活动经验(类比思想)的题目:(1)类比思想2、如下图,在探究圆的周长时,小朋友们用到了“化曲为直”的直观学习方法,这种学习方法在学习()时又一次使用了。这种数学活动经验要注意积累呦!
712、如下图,在探究圆的周长时,小朋友们用到了“化曲为直”的直案例1:计算并观察下面的算式,你能发现什么规律?1=1²1+3=4=2²(1+3+5)=9=3²(1+3+5+7)=……1+3+5+7+…+99=
前n个奇数相加的和等于n的平方。72案例1:计算并观察下面的算式,你能发现什么规律?前n个奇数相
案例2:观察下面的一组算式,你能发现什么规律?14+41=55,34+43=77,27+72=99,46+64=110,38+83=121设任意一个两位数是ab(a和b是1~9的自然数),那么ab+ba=(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b)(2)归纳思想。
73案例2:观察下面的一组算式,你能发现什么规律?设任案例3:如下图,两条直线相交形成4个角,你能说明∠2=∠4吗?(3)三段论。
74案例3:如下图,两条直线相交形成4个角,你能说明∠2=∠4吗
六、方程和函数思想1、方程和函数思想的具体应用。2、方程和函数思想的教学。75六、方程和函数思想75
练习:9+1=9+2=9+3=9+4=9+5=9+6=9+7=9+8=9+9=76练习:76
六、方程和函数思想案例1:妈妈买了3千克香蕉和2千克苹果,一共花了16元。苹果的价格是香蕉的2倍多1元,苹果和香蕉的单价各是多少?列方程:3χ+2(2χ+1)=16解方程,χ=2所以,苹果的单价是5元,香蕉的单价是2元77六、方程和函数思想案例1:妈妈买了3千克香蕉和2千
案例2:小明家的果园供游人采摘桃,每千克10元。请写出销售桃的总价(总收入)y元与数量(千克数)χ之间的关系式。如果某天的销量是50千克,这天的总收入是多少?如果上个月的总收入是12000元,上个月的销量是多少?列关系式:y=10χ。某天的销量是50千克,总收入是500元。上个月的总收入是12000元,销量是1200千克。78案例2:小明家的果园供游人采摘桃,每千克10元。请
案例3:有一批捐赠的图书分给一个班的学生,如果每人分3本,则还缺15本;如果每人分2本,则剩余25本。这个班有多少学生?设:这个班有学生χ人列方程:3χ-15=2χ+25χ=4079案例3:有一批捐赠的图书分给一个班的学生,如果每人
七、几何变换思想几何变换合同变换相似变换平移变换轴对称变换旋转变换按一定比例放大或缩小80七、几何变换思想几何变换合同变换相似变换平移变换轴2、几何变换思想的教学。(1)平移变换。平移的方向,不一定是水平的。小学阶段:直观认识平移现象。物体在直线方向上移动,本身没有发生方向上的改变。812、几何变换思想的教学。平移的方向,不一定是水平的。小学阶段
(2)旋转变换。设计图案82(2)旋转变换。设计图案82
(3)对称变换。如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。把一个图形沿某一条直线折叠,如果它能够与另一图形重合,那么就说这两个图形关于这条直线对称。83(3)对称变换。如果一个图形沿一条直线折叠,直线两旁的部(4)相似变换。84(4)相似变换。84
形状不变,大小改变(图形的放大、缩小)85形状不变,大小改变(图形的放大、缩小)85
1、小学数学中几何变换思想的应用如下表。思想方法知识点应用举例轴对称画简单的轴对称图形认识轴对称图形,画出一个简单图形的轴对称图形平移变换认识平移,把简单图形平移判断生活中物体的运动哪些是平移现象画出一个简单图形沿水平方向、竖直方向平移后的图形旋转变换感知旋转现象判断生活中物体的运动哪些是旋转现象把简单图形旋转90°画出一个简单图形顺时针或逆时针旋转90°后的图形合同变换图形的性质、面积的计算平行四边形、三角形、梯形和圆的面积公式的推导等都渗透了几何变换思想图案的欣赏和设计判断一些图案是由一些基本图形经过什么变换得到的;利用平移、旋转和轴对称等变换,设计美丽的图案相似变换把简单图形放大或缩小画出长方形、正方形、三角形等简单的图形按照一定的比例放大或缩小后的图形861、小学数学中几何变换思想的应用如下表。思想方法知2、几何变换思想的教学。第一,对一些概念的准确把握。案例2:一架直升飞机在按一定速度飞行时螺旋桨的转动是旋转吗?它停在陆地上时螺旋桨的转动是旋转吗?案例1:一辆汽车在笔直平坦的道路上行驶,这辆汽车的运动是平移吗?如果这辆汽车急刹车,轮胎抱死在道路上滑行是平移吗?872、几何变换思想的教学。案例2:一架直升飞机在按一定速度飞行案例3:下面的图形是轴对称图形吗?图(1)图(2)88案例3:下面的图形是轴对称图形吗?图(1)图(2)88案例4:人教版教材,求三角形和梯形的面积。把两个完全相同的三角形和梯形拼成平行四边形,利用变换原理为:先把一个图形旋转180度,再平移。第二,注意图形变换与其它几何知识的联系。89案例4:人教版教材,求三角形和梯形的面积。第二,注意图形案例5:小明家的院子里有一块长30米、宽20米的长方形菜地,地里有两条相互垂直而且宽都是1米的小路。这块地实际种菜的面积是多少?种菜的面积就转化为求长29米、宽19米的长方形的面积,用长乘宽就可求出面积。第二,注意图形变换与其它几何知识的联系。90案例5:小明家的院子里有一块长30米、宽20米的长方形菜地,案例6:如图所示,三个同心圆的最大的圆的两条直径相互垂直,最大的圆的半径是2cm,求阴影部分的面积。阴影的面积为:×π×2²=π(cm²)。
91案例6:如图所示,三个同心圆的最大的圆的两条直径相互垂直,最
第三,对教学要求和解题方法的准确把握。1、直观判断题如:在方格纸上原图形中的点A(2,3),经过平移后它的对应点为A′(8,10)。那么原图形可以通过先向右平移6格,再向上平移7格;或者先向上平移7格,再向右平移6格,得到平移后的图形。2、作图题
92第三,对教学要求和解题方法的准确把握。如:在方格纸上原图
八、分类讨论思想1、分类讨论思想的具体应用。思想方法知识点应用举例分类讨论思想分类一年级上册物体的分类,渗透分类思想、集合思想数的认识数可以分为正数、0、负数有理数可以分为整数和分数(小数是特殊的分数)整数的性质整数可以分为奇数和偶数正整数可以分为1、素数和合数图形的认识平面图形中的多边形可以分为:三角形、四边形、五边形、六边形…三角形按角可以分为:锐角三角形、直角三角形、钝角三角形三角形按边可以分为;不等边三角形、等腰三角形,其中等腰三角形又可以分为等边三角形和腰与底边不相等的等腰三角形四边形按对边是否平行可以分为:平行四边形、梯形和两组对边都不平行的四边形统计数据的分类整理和描述排列组合分类讨论是小学生了解排列组合思想的基础概率排列组合是概率计算的基础植树问题先确定是几排树,再确定每排树的情况两端都不栽、一端栽一端不栽、两端都栽抽屉原理构建抽屉实际上是应用分类标准,把所有元素进行分类93八、分类讨论思想思想方法知识点应用举例分类讨论分
2的倍数的特征:(1)从生活情境“双号”引入。(2)观察2的倍数的个位数,总结出2的倍数的特征。(3)介绍奇数和偶数的概念。(4)可让学生随意找一些数进行验证,但不要求严格的证明。942的倍数的特征:94
质数和合数的概念:(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。(2)可任出一个数,让学生根据概念判断其为质数还是合数。95质数和合数的概念:95
三角形按角分类任意找一些三角形引导学生自己分类启发学生想怎样用集合圈表示几种三角形之间的关系96三角形按角分类96
三角形按边分类思路同前也可以同时进行分类更加开放等腰三角形的特征97三角形按边分类97分为三类:十位是1的有12、13,十位是2的有21、23,十位是3的有31、32。98分为三类:十位是1的有12、13,十位是2的有21、23,十只有1枚硬币的:1角、5角、1元只有2枚硬币的:6角、1元1角、1元5角、只有3枚硬币的:1元6角99只有1枚硬币的:1角、5角、1元992、分类讨论思想的教学。第一,在分类单元的教学中,注意渗透分类思想和集合思想。第二,在三大领域知识的教学中注意经常性地渗透分类思想和集合思想。第三,注意从数学思维和解决问题的方法上渗透分类思想。第四,在统计与概率知识的教学中,渗透分类的思想。第五,注意让学生体会分类的目的和作用,不要为了分类而分类。第六,注意有关数学规律在一般条件下的适用性和特殊条件下的不适用性。1002、分类讨论思想的教学。1002、分类讨论思想的教学。
案例1:下图中共有多少个长方形?
单一的长方形:3×3=9;由两个单一长方形组成的长方形:横数2×3=6,竖数2×3=6,6+6=12;由三个单一长方形组成的长方形:横数1×3=3,竖数1×3=3,3+3=6;由四个单一长方形组成的长方形:4;由六个单一长方形组成的长方形:4;由九个单一长方形组成的长方形:1。共计9+12+6+4+4+1=36(个)。1012、分类讨论思想的教学。案例1:下图中共有多少个长方形
案例2:下面四张卡片上分别写有数字0、1、2、3,可以利用它们组成多少不同的四位数?分析:把所有能组成的四位数分成三类,再依此按从小到大的顺序排列如下。(1)102310321203123013021320(2)201320312103213023012310(3)301230213102312032013210102案例2:下面四张卡片上分别写有数字0、1、2、3,可以利
方法是:可以按只有一种、二种、三种硬币的方法进行分类组合。只有一种硬币:10个1分,5个2分,2个5分,3种换法;只有两种硬币:8个1分和1个2分,6个1分和2个2分,4个1分和3个2分,2个1分和4个2分,5个1分和1个5分,5种换法;只有三种硬币:1个1分、2个2分和1个5分,
3个1分、1个2分和1个5分,2种换法。共计10种换法。案例3:把1张一角的人民币换成零钱,现有足够的1、2、5分币。有多少种换法?103方法是:可以按只有一种、二种、三种硬币的方法进行分类组合
还可以按照币种的范围分类讨论。104还可以按照币种的范围分类讨论。104
期末测试体现分类数学思想的题目:如下图,有一些扣子要分,笑笑、亮亮分别是这样分的,这一过程体现了()数学思想。这一思想为继续学习数学奠定基础。笑笑亮亮105
九、统计思想1、统计思想的具体应用。小学数学中统计的知识点主要有:象形统计图、单式统计表、复式统计表、单式条形统计图、复式条形统计图、单式折线统计图、复式折线统计图、扇形统计图、平均数、中位数、众数,以及不恰当的数据及统计图表可能产生误导。
106九、统计思想1062、统计思想的教学。第一,注重过程性目标的教学。第二,认识统计对决策的作用,能从统计的角度思考与数据有关的问题。第三,能对给定数据的来源、收集和描述的方法,以及分析的结论进行合理的质疑。第四,对有关概念应正确理解,应注重知识的应用,避免单纯的数据计算和概念判断。如:让学生找出下面一组数据的众数:758484898992929698。
1072、统计思想的教学。107平均数、中位数和众数都是反映一组数据集中趋势的数量,代表一般水平。平均数能反映全体数据的信息,任何一个数据的改变都会引起平均数的改变,比较敏感,因而应用比较普遍;缺点是易受极端值的影响。中位数处于中间水平,不受极端值的影响,运算简单,在一组数据中起分水岭的作用;缺点是不能反映全体数据的情况,可靠性较差。众数不受极端数据的影响,运算简单,当要找出适应多数需要的数值时,常用众数;缺点是不能反映全体数据的情况,可靠性较差。众数可能不唯一,甚至有时没有。108平均数、中位数和众数都是反映一组数据集中趋势的数量,代表一般2、统计思想的教学。案例1:一家公司2008年和2009年职工年工资情况如下表。职务总经理副总经理部门经理部门副经理普通员工人数12810792008年工资/万元875422009年工资/万元108.564.82.3(1)这家公司2008年和2009年职工平均工资各是多少?(2)这家公司对外宣称,2009年职工平均工资比2008年增长17%以上,这种说法有不妥之处吗?(1)2008和2009年职工平均工资分别为:(8+2×7+8×5+10×4+79×2)÷100=2.6(万元)(10+2×8.5+8×6+10×4.8+79×2.3)=3.047(万元)(2)(3.047-2.6)÷2.6≈17.2%,(2.3-2)÷2=15%。
1092、统计思想的教学。职务总经理副总经理部门经理部门副经理普通案例2:有关部门对一个社区的100个居民月度人均用水量进行了调查统计,数据如下表:用水量/吨23456人数/人82440226(1)计算这组数据的平均数、中位数和众数。(2)什么数可以代表居民人均用水量的一般水平?(3)如果采取阶梯水价,标准用水量以上加价收费,希望至少70%的居民不受影响,你认为人均标准用水量定为多少比较合适?(1)平均数:(2×8+3×24+4×40+5×22+×6)÷100=3.94(吨),中位数和众数都是4吨。(2)中位数和众数相等,平均数也约等于中位数和众数,这三个量差别很小,都可以作为该组数据一般水平的代表。(3)100×70%=70,用水量在4吨及以下的人数为72人,所以人均标准用水量定为4吨比较合适。110案例2:有关部门对一个社区的100个居民月度人均用水量进行了十、分析法和综合法1、分析法和综合法的具体应用。2、分析法和综合法的教学。第一,在学习一般的数学概念和性质时注重分析能力和综合能力的培养。第二,在解决问题时注重分析法和综合法的结合运用。111十、分析法和综合法2、分析法和综合法的教学。111案例1:一件衬衫的标价是150元,现在因换季按标价打八折的优惠价出售,还能够在进价的基础上获利20%。这款衬衫的进价是多少钱?
根据分析法找出的数量关系和解题思路,用综合法列式如下。进价加获利20%一共的钱数:150×80%=120(元)这款衬衫的进价是:120÷(1+20%)=100(元)列成综合算式是:150×80%÷(1+20%)=100元)112案例1:一件衬衫的标价是150元,现在因换季按标价打八折的优案例2:食品店把120千克巧克力分装在两种大小不同的盒子里,先装0.25千克一盒的装了200盒,剩下的每盒装0.5千克。这些巧克力一共装了多少盒?小盒共装的千克数:0.25×200=50(千克)大盒共装的千克数:120-50=70(千克)大盒装的盒数:70÷0.5=140(盒)一共装的盒数:200+140=340(盒)综合算式为:200+(120-0.25×200)÷0.5=340(盒)案例3:明明家有一些苹果和梨,苹果的个数如果再减少5个,就恰好是梨的个数的3倍。如果每天吃4个苹果和2个梨,当梨吃完时苹果还剩15个。那么原来梨和苹果各有多少个?苹果和梨相比较,苹果减少15个是梨的2倍,减少5个是梨的3倍;所以,从15个中减去5个,剩下的10个就是梨的个数。113案例2:食品店把120千克巧克力分装在两种大小不同的盒子里,十一、概率思想1、概率思想。生活中有很多现象是必然的,如也有很多是偶数的。偶然现象,也叫随机现象,表面上看可能无规律,但大量地收集数据或重复实验可能具有某种规律性,概率统计主要是用数学方法揭示这种统计规律性。(1)事件的分类。必然事件确定事件事件不可能事件随机事件(2)概率的类型。古典概型概率几何概型114十一、概率思想1、概率思想。114
古典概率模型:基本事件的个数有限每个基本事件出现的可能性相等几何概率模型:每个基本事件发生的概率只与构成该事件区域的长度(面积、体积)成比例115古典概率模型:几何概率模型:115
1、概率思想的具体应用。
(1)根据等可能性事件设计公平的游戏规则;(2)统计推断中很多情况是根据对随机事件的相关数据进行分析后,再对随机事件发生的可能性大小进行预测和决策。如:2010年南非世界杯决赛西班牙对荷兰,有人预测西班牙夺冠,理由是西班牙是近年欧洲冠军、实力雄厚;还有人预测荷兰卫冕,理由是荷兰是无冕之王、两次获得世界杯亚军。西班牙和荷兰两队历史上一共交手9次,其中荷兰4胜1平4负,实力不分上下。所以两队夺冠的可能性各占一半。1161、概率思想的具体应用。(1)根据等可能性事件设计公平的2、概率思想的教学。第一,随机事件的发生是有条件的,是在一定条件下,事件发生的可能性有大小;条件变了,事件发生的可能性大小也可能会变化。第二,避免把频率与概率混淆。第三,创设联系学生生活的情境,要注意每个基本事件是否具有等可能性。第四,概率是理论上的精确值,但是随机事件在具体一次试验中可能出现意外,即频率与概率有一定偏差。1172、概率思想的教学。117案例1:连续两次抛掷一枚硬币,如果第一次正面朝上,那么第二次一定是反面朝上吗?案例2:天气预报预测明天降水概率是90%,明天一定下雨吗?118案例1:连续两次抛掷一枚硬币,如果第一次正面朝上,那么第二次案例3:六(2)班同学血型情况如右图。(1)从图中你能得到哪些信息?(2)该班有50人,各种血型各有多少人?(1)从图中得到如下信息:在六(2)班的同学中有四种血型,这四种血型O型的人最多,占40%,A型和B型的人数分别排第二、第三,AB型的人最少,只占8%。(2)50人中O型、A型、B型和AB型的人数分别有:20、14、12、4人。(3)六年级有200人,你能估计各种血型的人数吗?119案例3:六(2)班同学血型情况如右图。(1)从图中得到如下信2、反证法的教学。第一,掌握它的基本原理和步骤是必要的。第二,对反证法涉及的一些概念和词语应正确理解。第三,对于学生来说,只需初步了解其方法。作为教师而言,要掌握反证法的基本原理、步骤和推理方法,以便在教学中把握反证法的科学性。十二、反证法1、反证法的具体应用。1202、反证法的教学。十二、反证法1202、反证法的教学。案例1:把43人分成7个小组,总有一个小组至少有7人。请说明理由。假设∠A不是锐角,首先三角形的任何一个内角不可能等于0度,那么有∠A≥90°,又因为∠C=90°,∠B>0°,所以∠A+∠B+∠C>180°,这与三角形的内角和等于180°矛盾。所以∠A一定是锐角。案例2:在直角三角形ABC中,∠C是直角,请说明:∠A一定是锐角。1212、反证法的教学。假设∠A不是锐角,首先三角形的任何一个内角十三、集合思想1、集合思想的具体应用。案例:正整数集合与正偶数集合,它们的基数相等吗?分析:只要满足一一对应就基数相等。12345┅↓↓↓↓↓246810┅122十三、集合思想案例:正整数集合与正偶数集合,它们的基数相等吗123123案例1:乒乓球比赛有16人参加A组的小组赛,规定采取淘汰赛决出小组第一名参加决赛。一共要进行多少场比赛?十三、集合思想2、集合思想的教学。第一,应正确理解有关概念。第一轮共有8场比赛,第二轮共有4场比赛,第三轮共有2场比赛,第四轮共有1场比赛;所以总共有15(8+4+2+1=15)场比赛。在小组参赛的16人中,最后只有一人得第一名,要淘汰15人,所以比赛的场数为15场。124案例1:乒乓球比赛有16人参加A组的小组赛,规定采取淘汰赛决第二,正确把握集合思想的教学要求。
案例2:六(1)班举办文艺活动,演出歌舞节目的有9人,演出小品等节目的有12人,两类节目都参加的有5人。该班共有多少人参加这两类节目的演出?第三,集合思想的教学要贯彻小学数学的始终。
125第二,正确把握集合思想的教学要求。案例2:六(1)班举办文十四、极限思想1、极限思想的具体应用。极限思想在小学数学中的应用和渗透,主要体现在以下几点。(1)在数的认识中体会有限与无限的思想。(2)在数的计算中体会极限思想。(3)在认识图形时渗透无限的思想。(4)在圆的面积、圆柱的体积的计算中渗透极限思想。126十四、极限思想126等分后的小块组成不同的形状近似平行四边形近似三角形近似梯形127等分后的小块组成不同的形状近似平行四边形近似三角形近似梯形1四等分圆圆的面积128四等分圆圆的面积128四等分圆圆的面积129四等分圆圆的面积129四等分圆圆的面积130四等分圆圆的面积130四等分圆圆的面积131四等分圆圆的面积131四等分圆圆的面积132四等分圆圆的面积132四等分圆圆的面积133四等分圆圆的面积133四等分圆圆的面积134四等分圆圆的面积134八等分圆圆的面积135八等分圆圆的面积135八等分圆圆的面积136八等分圆圆的面积136八等分圆圆的面积137八等分圆圆的面积137八等分圆圆的面积138八等分圆圆的面积138八等分圆圆的面积139八等分圆圆的面积139八等分圆圆的面积140八等分圆圆的面积140十六等分圆圆的面积141十六等分圆圆的面积141圆的面积142圆的面积142圆的面积143圆的面积143圆的面积144圆的面积144圆的面积十六等分圆145圆的面积十六等分圆145分得越细越接近长方形曲直播放146分得越细越接近长方形曲直播放146147147148148149149150150151151152152153153154154155155156156157157158158159159
2、极限思想的教学。案例1:把循环小数0.999…化成分数。0.9+0.09+0.009+…=0.999…0.999…=11602、极限思想的教学。0.9+0.09+0.009+…=0.十五、假设法1、假设法的具体应用。161十五、假设法161十五、假设法2、假设法的教学。课例:《分数的基本性质》
第一,根据题目的特点,选择适当的数据进行假设。
案例1:(1)六年级参加植树的男生和女生共有36人,其中男生人数是女生人数的3倍。男生和女生各有多少人?(2)六年级参加植树的男生和女生共有36人,其中男生人数的是女生人数的2倍。男生和女生各有多少人?162十五、假设法第一,根据题目的特点,选择适当的数据进行假设。案例2:小明和妈妈恰好花100元买了10本书,单价有8元一本的和13元一本的两种。其中8元一本的和13元一本的各买了几本?8元的买了6本,13元的买了4本。163案例2:小明和妈妈恰好花100元买了10本书,单价有8元一本
第二,在数量之间具有一定的比例关系前提下,可假设其中的一个数量为单位“1”,可大大简化计算的繁琐程度。案例3:足球比赛门票是20元一张,平均每场有5000名观众,降价后每场观众增加了50%,收入增加了20%,降价后门票的价格是多少?降价后收入是:5000×20×(1+20%)=120000(元)降价后的观众人数是:5000×(1+50%)=7500(人)所以降价后的门票价格是:120000÷7500=16(元)。假设降价前的观众人数是1,则降价后的观众人数是1×(1+50%)=1.5,降价前的收入是20×1,则降价后的收入是20×1×(1+20%)=24,所以降价后的门票价格是:24÷1.5=16(元)。164第二,在数量之间具有一定的比例关系前提下,可假设其中的一个案例4:如下图所示,水池和菜地组成了一个正方形,水池和林地组成了一个长方形,重叠的部分是水池。水池的面积占长方形的,占正方形的。林地的面积比菜地多200平方米,水池的占地面积是多少?设水池的面积为1,那么林地的面积为1÷-1=5菜地的面积为1÷-1=3,200÷(5-3)=100(平方米)。所以水池的占地面积为100平方米。165案例4:如下图所示,水池和菜地组成了一个正方形,水池和林地组
十六、运筹思想运筹学:应用数学的方法在军事、管理、规划、人力安排、交通、经济等领域找到解决问题的最佳方案。在小学,主要讨论以下几个问题:1、分配问题。对于有限的资源、人员、设备、时间等因素构成的系统,如何统筹规划,以最优的方式对有关因素加以安排或分配,使得耗费最小,效益最大。166十六、运筹思想166
167167
2、排队问题。研究公共服务系统中,如何安排服务设施,尽量缩短服务时间,使服务系统达到最优状态。1682、排队问题。168
3、对抗问题。研究竞争双方分别选择最优的对抗策略,以使本方在竞争中处于优势。1693、对抗问题。169
数学思想方法不同于一般的概念和技能,技能一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。
170数学思想方法不同于一般的概念和技能,技能一般通过短期好雨知时节,当春乃发生。随风潜入夜,润物细无声
——杜甫171好雨知时节,当春乃发生。171172172谢谢感谢您的聆听
您的关注使我们更努力此课件下载后可自行编辑修改关注我每天分享干货173谢谢感谢您的聆听
您的关注使我们更努力此课件下载后可自行编辑此课件下载后可自行编辑修改关注我每天分享干货小学数学思想方法174此课件下载后可自行编辑修改小学数学思想方法1真正的教育是将在学校所学的知识全忘掉,所剩下的。
——陶行知175真正的教育是将在学校所学的知识全忘掉,所剩下的。2
在学生的脑力劳动中,摆在第一位的并不是背书,而是让学生本人进行思考。背书会使人变傻。
——苏霍姆林斯基176在学生的脑力劳动中,摆在第一位的并不是背书,而
数学思想是数学学科发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓,内涵十分丰富。177数学思想是数学学科发生、发展的根本,是探索研究
数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中。
高考考试大纲的说明178数学思想和方法是数学知识在更高层次上的抽象和概括,它不懂得数学思想方法的数学教师不是一个称职的教师。
——徐利治179不懂得数学思想方法的数学教师不是一个称职的教师。6
数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。
180数学思想和数学方法既有区别又有密切联系。数学思想一、符号化思想二、化归思想三、模型思想四、数形结合思想五、推理思想六、方程和函数思想七、几何变换思想八、分类讨论思想九、统计思想
十、分析法和综合法十一、概率思想十二、反证法十三、集合思想十四、极限思想十五、假设法十六、运筹思想
181一、符号化思想九、统计思想8一、符号化思想1、符号化思想的应用。第一,能从具体情境中抽象出数量关系和变化规律,并用符号表示。如:a+b=b+a
第二,理解符号所代表的数量关系和变化规律。第三,会进行符号间的转换。第四,能选择适当的程序和方法解决用符号所表示的问题。182一、符号化思想9用符号表示变化规律。数列的变化规律:1,2,3,5,8,…图形的变化规律。一、符号化思想1、符号化思想的应用。183用符号表示变化规律。一、符号化思想102、符号化思想的教学。①②③④⑤⑥“垂直与平行”
1842、符号化思想的教学。①②③a∥b或者b∥a185a∥b或者b∥a12①②③④⑤⑥a⊥b或者b⊥a186①②③④
二、化归思想化归(转化)思想从小学到中学,数学知识呈现一个由易到难、从简到繁的过程;然而,人们在学习数学、理解和掌握数学的过程中,却经常通过把陌生的知识转化为熟悉的知识、把繁难的知识转化为简单的知识,从而逐步学会解决各种复杂的数学问题。化归思想也是攻克各种复杂问题的法宝之一。1、化归思想的具体应用。187二、化归思想1、化归思想的具体应用。14
二、化归思想2、教学中的化归策略。188二、化归思想15
18916
19017
(1)下图是平行四边形停车位,它的面积是()。A.7.5×4B.7.5×6C.6×4
191(1)下图是平行四边形停车位,它的面积是(
王老师在教学时,用木条制成一个长方形框教具,木条长18厘米,宽15厘米。它的周长和面积各是多少?如果把它拉成平行四边形,周长和面积会怎样?
192王老师在教学时,用木条制成一个长方形框教具,木高底下底上底高平行四边形的面积=底×高高底三角形的面积=底×高÷2高上底梯形的面积=(上底+下底)×高÷2123193高底下底上底高平行四边形的面积=底×高高底三角形的面积
图1图2194图1图221案例1:+++……=
解决问题中的化归策略。(1)化抽象问题为直观问题。1195案例1:+++……=解决
解决问题中的化归策略。(2)化繁为简的策略。四年级(下册)第117---118页例1《植树问题》。例1:同学们要在全长100米的小路一边植树,每隔5米种一棵树(两端要栽)。一共需要多少棵树苗?196解决问题中的化归策略。(2)化繁为简的策略。四年级
解决问题中的化归策略。(2)化繁为简的策略。全长间隔长度研究方法(线段图)间隔段数棵数5米5米1210米5米2315米5米34……发现:棵数=间隔数+1间隔数=棵数-1
197解决问题中的化归策略。(2)化繁为简的策略。全长间
解决问题中的化归策略。(2)化繁为简的策略。全长间隔长度研究方法(线段图)间隔段数棵数5米5米1210米5米2315米5米34……发现:棵数=间隔数+1间隔数=棵数-1
198解决问题中的化归策略。(2)化繁为简的策略。全长间
解决问题中的化归策略。(2)化繁为简的策略。把186拆分成93和93,93和93的乘积最大,乘积为8649。
案例2:把186拆分成两个自然数的和,怎样拆分才能使拆分后的两个自然数的乘积最大?187呢?199解决问题中的化归策略。(2)化繁为简的策略。把18
(2)化繁为简的策略。案例3:你能快速口算85×85=,95×95=,105×105=吗?个位数是5的相等的两个数的乘积分为左右两部分:左边为因数中5以外的数字乘比它大1的数,右边为25(5乘5的积)。所以85×85=7225,95×95=9025,105×105=11025200(2)化繁为简的策略。个位数是5的相等的两个数的乘
解决问题中的化归策略。(3)化实际问题为特殊的数学问题。假设都是上山,那么总路程是18(6×3)千米,比实际路程少算了2千米,所以,上山时间是4小时。上山和下山的路程分别是12千米和8千米。案例1:某旅行团队翻越一座山。上午9时上山,每小时行3千米,到达山顶时休息1小时。下山时,每小时行4千米,下午4时到达山底。全程共行了20千米。上山和下山的路程各是多少千米?201解决问题中的化归策略。假设都是上山,
案例2:李阿姨买了2千克苹果和3千克香蕉用了11元,王阿姨买了同样价格的1千克苹果和2千克香蕉,用了6.5元。每千克苹果和香蕉各多少钱?解决问题中的化归策略。(3)化实际问题为特殊的数学问题。直接分析:1千克苹果和2千克香蕉6.5元,那么可得出2千克苹果和4千克香蕉13元;题中已知2千克苹果和3千克香蕉11元。用13减去11得2,所以香蕉的单价是每千克2元。再通过计算得苹果的单价是每千克2.5元。202案例2:李阿姨买了2千克苹果和3千克香蕉用了1
变式:
1、水果商店昨天销售的苹果比香蕉的2倍少30千克,这两种水果一共销售了180千克。销售苹果多少千克?
2、水果商店昨天销售的香蕉比苹果的多30千克,这两种水果一共销售了180千克。销售苹果多少千克?
3、水果商店昨天销售的苹果是香蕉的2倍,销售的梨是香蕉的3倍。这三种水果一共销售了180千克。销售香蕉多少千克?
4、水果商店昨天销售的苹果是香蕉的2倍,销售的梨是苹果的2倍。这三种水果一共销售了210千克。销售香蕉多少千克?(4)化未知问题为已知问题。案例1:水果商店昨天销售的苹果比香蕉的2倍多30千克,这两种水果一共销售了180千克。销售香蕉多少千克?203变式:(4)化未知问题为已知问题。案例1:水果期末测试体现转化数学思想的题目:1、如下图,在推倒平行四边形面积公式的过程中,这一过程体现了()数学思想。这一思想为后面学习三角形面积、梯形面积奠定基础。204期末测试体现转化数学思想的题目:312、“转化”是一种常见的解决问题的方法。如下图,把一个半圆分成若干份,剪开后拼成一个近似的长方形,这两个图形()。
A、面积相等,周长也相等
B、面积相等,周长不相等
C、面积不相等,周长也不相等2052、“转化”是一种常见的解决问题的方法。如下图,把一个半圆分3、在小数除法中,如:要把这两个小数变成整数才能进行计算,把小数变成整数这一过程运用了()的思想方法。2063、在小数除法中,如:要把这两个小数变成整数三、模型思想1、模型思想的具体应用。2、模型思想的教学。207三、模型思想2、模型思想的教学。34
2208235第一,学习的过程可以经历类似于数学家建模的再创造过程。《长方体的认识》①量一量;②比一比;③找一找;④折一折。209第一,学习的过程可以经历类似于数学家建模的再创造过程。《长小棒根数摆几个□剩几根小棒列式
8□□8÷4=2
9□□9÷4=2……1
10□□10÷4=2……2
11□□11÷4=2……3
12□□□12÷4=3
13□□□13÷4=3……1……二年级下册《余数与除数的关系》结论:余数都比除数小。
210小棒根数摆几个□剩几根小棒列式8□□8÷4=2
第三,应用已有的数学知识分析数量关系和空间形式,经过抽象建立模型,进而解决各种问题。第二,对于大多数人来说,在现实生活和工作中利用数学解决各种问题,基本上都是根据对现实情境的分析,利用已有的数学知识构建模型。211第三,应用已有的数学知识分析数量关系和空间形式
案例1:小明的家距离学校600米,每天上学从家步行10分钟到学校。今天早晨出门2分钟后发现忘记带文具盒,立即回家去取。他如果想按原来的时间赶到学校,他从回家再到学校,步行的速度应是多少?(取东西的时间忽略不计)5米跳绳的根数12342米跳绳的根数7520剩余米数1010案例2:有一根20米长的绳子,要剪成2米和5米长两种规格的跳绳,每种跳绳各剪多少根?(要求绳子无剩余,并且每种规格的跳绳至少要有一根。)212案例1:小明的家距离学校600米,每
案例3:一瓶矿泉水满瓶水为500毫升,小林喝了一些,剩余的水都在圆柱形的部分,高度是16厘米。如果把瓶盖拧紧,倒立过来,无水的部分高度是4厘米。小林喝了多少水?
设小林喝的水为v毫升,列式为:v:500=4:(16+4)v=100。213案例3:一瓶矿泉水满瓶水为500毫升,小林喝了四、数形结合思想
“数缺形时少直觉,形少数时难入微。”
——华罗庚
数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。
214四、数形结合思想41四、数形结合思想1、数形结合思想的具体应用。数形结合思想主要体现:一是利用“形”作为各种直观工具帮助学生理解和掌握知识、解决问题。二是数轴及平面直角坐标系在小学的渗透。三是统计图本身和几何概念模型都是数形结合思想的体现。四是用代数(算术)方法解决几何问题。
215四、数形结合思想42四、数形结合思想1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年极限运动项目立项申请报告
- 员工辞职报告(集锦15篇)
- 2024-2025学年芜湖市繁昌县三上数学期末综合测试试题含解析
- 2024-2025学年铜官山区数学三年级第一学期期末调研试题含解析
- 2024年农产品区域公用品牌推广服务合同3篇
- 2024年标准租赁物品回购合同范本版B版
- 父与子读后感集合15篇
- 银行岗位竞聘演讲稿模板汇编五篇
- 四年级上册语文教学计划模板十篇
- 养成工作计划3篇
- 社区居家养老食堂方案策划书(2篇)
- 2023-2024学年浙江省宁波市余姚市九年级(上)期末英语试卷
- DZ/T 0462.4-2023 矿产资源“三率”指标要求 第4部分:铜等12种有色金属矿产(正式版)
- DZ∕T 0338.3-2020 固体矿产资源量估算规程 第3部分 地质统计学法(正式版)
- 《无机及分析化学》期末考试试卷附答案
- 2024年药品集中采购合同范本(二篇)
- 新疆维吾尔自治区五大名校2024年高考化学必刷试卷含解析
- 新能源车更换电池合同范本
- 微生物学(鲁东大学)智慧树知到期末考试答案章节答案2024年鲁东大学
- 饮食的健康哲学智慧树知到期末考试答案章节答案2024年青岛大学
- ALC板施工施工方案及工艺要求
评论
0/150
提交评论