上海市第三女子中学2022年数学高一上期末达标检测模拟试题含解析_第1页
上海市第三女子中学2022年数学高一上期末达标检测模拟试题含解析_第2页
上海市第三女子中学2022年数学高一上期末达标检测模拟试题含解析_第3页
上海市第三女子中学2022年数学高一上期末达标检测模拟试题含解析_第4页
上海市第三女子中学2022年数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3若某户居民本月缴纳的水费为90元,则此户居民本月的用水量为()A.17 B.18C.19 D.202.若-<α<0,则点P(tanα,cosα)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.函数的部分图象如图所示,则可能是()A. B.C. D.4.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.5.设函数,若,则A. B.C. D.6.如果两个函数的图象经过平移后能够重合,则称这两个函数为“互为生成”函数,给出下列函数:;;;,其中“互为生成”函数的是A. B.C. D.7.函数f(x)=ax(a>0,a≠1)对于任意的实数xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)8.设函数,且在上单调递增,则的大小关系为A B.C. D.不能确定9.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则分钟后物体的温度(单位:)满足:.若常数,空气温度为,某物体的温度从下降到,大约需要的时间为()(参考数据:)A.分钟 B.分钟C.分钟 D.分钟10.若函数的图像向左平移个单位得到的图像,则A. B.C. D.11.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.12.已知函数,则满足的x的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数是幂函数,且过点,则___________.14.“”是“”的_______条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分又不必要”中的一个)15.已知命题“∀x∈R,e x≥a”16.已知幂函数的图象过点,则此函数的解析式为______三、解答题(本大题共6小题,共70分)17.(1)已知若,求x的取值范围.(结果用区间表示)(2)已知,求的值18.已知A(2,0),B(0,2),,O为坐标原点(1),求sin2θ的值;(2)若,且θ∈(-π,0),求与的夹角19.已知函数.(1)在平面直角坐标系中画出函数的图象;(不用列表,直接画出草图.(2)根据图象,直接写出函数的单调区间;(3)若关于的方程有四个解,求的取值范围20.如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.(1)求证:平面;(2)求三棱锥的体积.21.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.22.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据给定条件求出水费与水价的函数关系,再由给定函数值计算作答.【详解】依题意,设此户居民月用水量为,月缴纳的水费为y元,则,整理得:,当时,,当时,,因此,由得:,解得,所以此户居民本月的用水量为.故选:D2、B【解析】∵-<α<0,∴tanα<0,cosα>0,∴点P(tanα,cosα)位于第二象限,故选B考点:本题考查了三角函数值的符号点评:熟练掌握三角函数的定义及三角函数的值的求法是解决此类问题的关键,属基础题3、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,,得到正确答案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,,解得:,,当时,,故A正确,其他选项均不合要求.故选:A4、C【解析】根据奇偶性的定义判断可得答案.【详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.5、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质6、D【解析】根据“互为生成”函数的定义,利用三角恒等变换化简函数的解析式,再结合函数的图象变换规律,得出结论【详解】∵;;;,故把中的函数的图象向右平移后再向下平移1个单位,可得中的函数图象,故为“互为生成”函数,故选D【点睛】本题主要主要考查新定义,三角恒等变换,函数的图象变换规律,属于中档题7、B【解析】由指数的运算性质得到ax+y【详解】解:由函数f(x)=a得f(x+y)=a所以函数f(x)=ax(a>0,a≠1)对于任意的实数x、y故选:B.【点睛】本题考查了指数的运算性质,是基础题.8、B【解析】当时,,它在上单调递增,所以.又为偶函数,所以它在上单调递减,因,故,选B.点睛:题设中的函数为偶函数,故根据其在上为增函数判断出,从而得到另一侧的单调性和,故可以判断出.9、D【解析】由已知条件得出,,,代入等式,求出即可得出结论.【详解】由题知,,,所以,,可得,所以,,.故选:D.10、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.11、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.12、D【解析】通过解不等式来求得的取值范围.【详解】依题意,即:或,即:或,解得或.所以的取值范围是.故选:D二、填空题(本大题共4小题,共20分)13、【解析】由题意,设代入点坐标可得,计算即得解【详解】由题意,设,过点故,解得故则故答案为:14、充分不必要【解析】解不等式,利用集合的包含关系判断可得出结论.【详解】由得,解得或,因或,因此,“”是“”的充分不必要条件.故答案为:充分不必要.15、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤016、##【解析】设出幂函数,代入点即可求解.【详解】由题意,设,代入点得,解得,则.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(2)或.【解析】(1)根据指数函数单调性求解即可;(2)由同角三角函数的基本关系求解,注意角所在的象限即可.【详解】(1)因为,所以,解得,即x的取值范围为.(2)因为,所以是第三象限角或第四象限角,当是第三象限角时,,当是第四象限角时,.18、(1);(2)【解析】分析:(1)先根据向量数量积得sinθ+cosθ值,再平方得结果,(2)先根据向量的模得cosθ,即得C点坐标,再根据向量夹角公式求结果.详解:(1)∵=(cosθ,sinθ)-(2,0)=(cosθ-2,sinθ),=(cosθ,sinθ)-(0,2)=(cosθ,sinθ-2),=cosθ(cosθ-2)+sinθ(sinθ-2)=cos2θ-2cosθ+sin2θ-2sinθ=1-2(sinθ+cosθ)=-∴sinθ+cosθ=,∴1+2sinθcosθ=,∴sin2θ=-1=-.(2)∵=(2,0),=(cosθ,sinθ),∴+=(2+cosθ,sinθ),∵|+|=,所以4+4cosθ+cos2θ+sin2θ=7,∴4cosθ=2,即cosθ=.∵-π<θ<0,∴θ=-,又∵=(0,2),=,∴cos〈,〉=,∴〈,〉=.点睛:向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,通过解三角求得结果.19、(1)作图见解析;(2)增区间为和;减区间为和;(3).【解析】(1)化简函数的解析式为分段函数,结合二次函数的图象与性质,即可画出函数的图象;(2)由(1)中的图象,直接写出函数的单调区间;(3)把方程有四个解等价于函数与的图象有四个交点,利用函数的图象,即可求解.【详解】(1)由题意,函数,所以的图象如右图所示:(2)由(1)中的函数图象,可得函数的单调增区间为和,单调减区间为和.(3)由方程有四个解等价于函数与的图象有四个交点,又由函数的最小值为,结合图象可得,即实数的取值范围20、(1)证明见解析;(2).【解析】(1)先证明AC⊥BE,再取的中点,连接,经计算,利用勾股定理逆定理得到AC⊥BC,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM⊥平面BEF,即为所求三棱锥的高,进而计算得到其体积.【详解】解:(1)证明:∵四边形为矩形∴∵平面∴平面∵平面∴.如图,取的中点,连接,∴∵,,∴四边形是正方形.∴∴,∵∴∴是直角三角形∴.∵,、平面∴平面(2)由(1)知:∵平面,平面∴∵,、平面∴平面,∴平面即:是三棱锥的高∴【点睛】本题考查线面垂直的证明,棱锥的体积的计算,属基础题.在利用线面垂直的判定定理证明线面垂直时一定要将条件表述全面,“两个垂直,一个相交”不可缺少.21、(1)(2)【解析】(1)根据为等腰直角三角形可求解(2)根据三角函数定义分别得到、的坐标,再代入中可求解【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论