




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设,则A. B.0C.1 D.2.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.3.已知sin2α>0,且cosα<0,则角α的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数5.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.6.已知的三个顶点A,B,C及半面内的一点P,若,则点P与的位置关系是A.点P在内部 B.点P在外部C.点P在线段AC上 D.点P在直线AB上7.已知函数,则的值是()A. B.C. D.8.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)9.设四边形ABCD为平行四边形,,.若点M,N满足,则()A.20 B.15C.9 D.610.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度11.若,则的最小值为A.-1 B.3C.-3 D.112.已知函数,则()A.-1 B.2C.1 D.5二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若在内无零点,则的取值范围为___________.14.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)15.若函数的图象与的图象关于对称,则_________.16.若函数在区间内有最值,则的取值范围为_______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,函数(1)求的定义域;(2)当时,求不等式的解集18.已知函数的定义域是,设(1)求解析式及定义域;(2)若,求函数的最大值和最小值19.(1)当,求的值;(2)设,求的值.20.已知,其中为奇函数,为偶函数.(1)求与的解析式;(2)判断函数在其定义域上的单调性(不需证明);(3)若不等式恒成立,求实数的取值范围.21.已知幂函数,且在上为增函数.(1)求函数的解析式;(2)若,求的取值范围.22.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】详解】故选2、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.3、C【解析】根据二倍角公式可得到,又因为cosα<0,故得到进而得到角所在象限.【详解】已知sin2α>0,,又因为cosα<0,故得到,进而得到角是第三象限角.故答案为C.【点睛】本题考查象限角的定义,熟练掌握三角函数在各个象限中的符号是解决问题的关键,属于基础题4、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.5、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B6、C【解析】由平面向量的加减运算得:,所以:,由向量共线得:即点P在线段AC上,得解【详解】因为:,所以:,所以:,即点P在线段AC上,故选C.【点睛】本题考查了平面向量的加减运算及向量共线,属简单题.7、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D8、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.9、C【解析】根据图形得出,,,结合向量的数量积求解即可.【详解】因为四边形ABCD为平行四边形,点M、N满足,根据图形可得:,,,,,,,,故选C.本题考查了平面向量的运算,数量积的运用,考查了数形结合的思想,关键是向量的分解,表示.考点:向量运算.10、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.11、A【解析】分析:代数式可以配凑成,因,故可以利用基本不等式直接求最小值.详解:,当且仅当时等号成立,故选A.点睛:利用基本不等式求最值时,要注意“一正、二定、三相等”,有时题设给定的代数式中没有和为定值或积为定值的形式,我们需要对代数式变形,使得变形后的代数式有和为定值或者积为定值.特别要注意检验等号成立的条件是否满足.12、A【解析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.【详解】∵在这个范围之内,∴故选:A.【点睛】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围.【详解】因为函数在内无零点,所以,所以;由,得,所以或,由,得;由,得;由,得,因为函数在内无零点,所以或或,又因为,所以取值范围为.故答案为:.14、②④【解析】根据三角函数的性质,依次分析各选项即可得答案.【详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④15、【解析】求出的反函数即得【详解】因为函数的图象与的图象关于对称,所以是的反函数,的值域是,由得,即,所以故答案为:16、【解析】当函数取得最值时有,由此求得的值,根据列不等式组,解不等式组求得的取值范围(含有),对赋值求得的具体范围.【详解】由于函数取最值时,,,即,又因为在区间内有最值.所以时,有解,所以,即,由得,当时,,当时,又,,所以的范围为.【点睛】本小题主要考查三角函数最值的求法,考查不等式的解法,考查赋值法,属于中档题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为18、(1)g(x)=22x-2x+2,定义域为[0,1](2)最大值为-3,最小值为-4【解析】(1)根据函数,得到f(2x)和f(x+2)的解析式求解;再根据f(x)=2x的定义域是[0,3],由求g(x)的定义域;(2)由(1)得g(x)=22x-2x+2,设2x=t,t∈[1,2],转化为二次函数求解.【小问1详解】解:因为函数,所以f(2x)=22x,f(x+2)=2x+2,所以g(x)=f(2x)-f(x+2)=22x-2x+2,∵f(x)=2x的定义域是[0,3],∴,解得0≤x≤1,∴g(x)的定义域为[0,1]【小问2详解】由(1)得g(x)=22x-2x+2,设2x=t,则t∈[1,2],∴g(t)=t2-4t=,∴g(t)在[1,2]上单调递减,∴g(t)max=g(1)=-3,g(t)min=g(2)=-4∴函数g(x)的最大值为-3,最小值为-419、(1);(2)【解析】(1)利用商数关系,化弦为切,即可得到结果;(2)利用诱导公式化简,代入即可得到结果.【详解】(1)因为,且,所以,原式=(2)∵,【点睛】本题考查三角函数的恒等变换,涉及到正余弦的齐次式(弦化切),诱导公式,属于中档题.20、(1),;(2)函数在其定义域上为减函数;(3).【解析】(1)由与可建立有关、的方程组,可得解出与的解析式;(2)化简函数解析式,根据函数的解析式可直接判断函数的单调性;(3)将所求不等式变形为,根据函数的定义域、单调性可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】(1)由于函数为奇函数,为偶函数,,,即,所以,,解得,.由,可得,所以,,;(2)函数的定义域为,,所以,函数在其定义域上为减函数;(3)由于函数为定义域上的奇函数,且为减函数,由,可得,由题意可得,解得.因此,实数的取值范围是.【点睛】思路点睛:根据函数单调性求解函数不等式的思路如下:(1)先分析出函数在指定区间上的单调性;(2)根据函数单调性将函数值的关系转变为自变量之间的关系,并注意定义域;(3)求解关于自变量的不等式,从而求解出不等式的解集.21、(1)(2)【解析】(1)因为函数是幂函数,求出或,再分别验证是否满足函数在上是增函数;(2)由(1)知,根据函数的定义域和单调性解不等式.【详解】(1),即,则,解得或,当时,,当时,,∵在上为增函数,∴.(2)由(1)得定义域为且在上为增函数,∴,解得:,所以的取值范围为:.【点睛】本题考查幂函数和根据函数的性质解抽象不等式,意在考查基本概念和基本方法,属于基础题型.22、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后通过在的图像上以及与、与的关系即可得到函数的解析式;(3)首先可通过三个函数的解析式得出函数的解析式,再通过函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年党风廉政建设知识考试题库(附有答案)
- 2025年陕西省铜川市同官高级中学高一物理第二学期期末调研试题含解析
- 2025届新疆维吾尔自治区吐鲁番市高昌区二中高二物理第二学期期末学业质量监测试题含解析
- 河南省平顶山舞钢第一高级中学2025年物理高二下期末预测试题含解析
- 2025年吉林省长春市朝阳区实验中学高一物理第二学期期末教学质量检测试题含解析
- 2025届山西省忻州市岢岚中学物理高二下期末检测试题含解析
- 综采队安全风险辨识评估及管控措施清单
- 鼻饲病人营养护理
- 蔬菜配送中心物流合作协议
- 家庭农场农作物种子繁育协议
- 高中数学数列知识点总结
- TCCES 44-2024 老旧房屋结构安全监测技术标准
- 2024年汽车维修工技能理论考试题库含答案(满分必刷)
- 2025年专业保安证考试试题及答案
- 核心素养下小学英语分层作业布置有效性探究
- 计量知识宣传培训课件
- 2025浙江商业技师学院公开招聘24人高频重点模拟试卷提升(共500题附带答案详解)
- 第一单元第3课《大地的肌理》课件-一年级美术下册(人教版2024)
- 《嗜血细胞综合征》课件
- 智能运营平台解决方案
- 2025年上半年山东省济南市事业单位笔试易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论