浙江台州中学2023届高一数学第一学期期末达标检测试题含解析_第1页
浙江台州中学2023届高一数学第一学期期末达标检测试题含解析_第2页
浙江台州中学2023届高一数学第一学期期末达标检测试题含解析_第3页
浙江台州中学2023届高一数学第一学期期末达标检测试题含解析_第4页
浙江台州中学2023届高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.若角的终边和单位圆的交点坐标为,则()A. B.C. D.2.已知,则的取值范围是()A. B.C. D.3.某几何体的三视图如图所示(单位:cm),则该几何体的表面积为()A. B.C. D.4.下列每组函数是同一函数的是()A. B.C. D.5.已知,则的值为()A.-4 B.C. D.46.已知函数若方程恰有三个不同的实数解a,b,c(),则的取值范围是().A. B.C. D.7.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.8.斜率为4的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值为()A.a=,b=0 B.a=-,b=-11C.a=,b=-11 D.a=-,b=119.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC10.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是()A.6 B.8C.12 D.1811.函数的大致图像如图所示,则它的解析式是A. B.C. D.12.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④二、填空题(本大题共4小题,共20分)13.如图,在中,,,若,则_____.14.已知,则___________.(用含a的代数式表示)15.已知,,且,若不等式恒成立,则实数m的取值范围为______16.设A为圆上一动点,则A到直线的最大距离为________三、解答题(本大题共6小题,共70分)17.如图所示,四棱锥中,底面为矩形,平面,,点为的中点()求证:平面()求证:平面平面18.已知函数.(1)判断函数的奇偶性,并进行证明;(2)若实数满足,求实数的取值范围.19.已知函数(1)若函数图像关于直线对称,且,求的值;(2)在(1)的条件下,当时,求函数的值域.20.已知定义域为的函数是奇函数(1)求,的值;(2)用定义证明在上为减函数;(3)若对于任意,不等式恒成立,求的范围21.已知cosα=-35,且(1)求sinα(2)求sinα+6πcos22.已知角的终边有一点.(1)求的值;(2)求的值.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】直接利用三角函数的定义可得.【详解】因为角的终边和单位圆的交点坐标为,所以由三角函数定义可得:.故选:C2、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B3、D【解析】借助正方体模型还原几何体,进而求解表面积即可.【详解】解:如图,在边长为的正方体模型中,将三视图还原成直观图为三棱锥,其中,均为直角三角形,为等边三角形,,所以该几何体的表面积为故选:D4、C【解析】依次判断每组函数的定义域和对应法则是否相同,可得选项.【详解】A.的定义域为,的定义城为,定义域不同,故A错误;B.的定义域为,的定义域为,定义域不同,故B错误;C.与的定义域都为,,对应法则相同,故C正确;D.的定义域为,的定义域为,定义域不同,故D错误;故选:C【点睛】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.5、A【解析】由题,解得.故选A.6、A【解析】画出的图象,数形结合可得求出.【详解】画出的图象所以方程恰有三个不同的实数解a,b,c(),可知m的取值范围为,由题意可知,,所以,所以故选:A.7、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.8、C【解析】因为,所以,则,故选C9、C【解析】由斜二测画法得到原三角形,结合其几何特征易得答案.【详解】由题意得到原△ABC的平面图为:其中,AD⊥BC,BD>DC,∴AB>AC>AD,∴△ABC的AB、AD、AC三条线段中最长的是AB,最短的是AD故选C【点睛】本题考查了斜二测画法,考查三角形中三条线段长的大小的比较,属于基础题10、A【解析】由三视图还原几何体:底面等腰直角三角形,高为4的三棱锥,应用棱锥的体积公式求体积即可.【详解】由三视图可得如下几何体:底面等腰直角三角形,高为4的三棱锥,∴其体积.故选:A.11、D【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B;的图象为开口向上的抛物线,显然不适合,故选D点睛:识图常用方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题12、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.二、填空题(本大题共4小题,共20分)13、【解析】根据平面向量基本定理,结合向量加法、减法法则,将向量、作为基向量,把向量表示出来,即可求出.【详解】即:【点睛】本题考查平面向量基本定理的应用问题,解题时根据向量加法与减法法则将所求向量用题目选定的基向量表示出来,是基础题目.14、【解析】利用换底公式化简,根据对数的运算法则求解即可【详解】因为,所以故答案为:.15、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:16、【解析】求出圆心到直线的距离,进而可得结果.【详解】依题意可知圆心为,半径为1.则圆心到直线距离,则点直线的最大距离为.故答案:.三、解答题(本大题共6小题,共70分)17、(1)证明见解析;(2)证明见解析.【解析】(1)连接交于,连接.利用几何关系可证得,结合线面平行的判断定理则有直线平面(2)利用线面垂直的定义有,结合可证得平面,则,由几何关系有,则平面,利用面面垂直的判断定理即可证得平面平面试题解析:()连接交于,连接因为矩形的对角线互相平分,所以在矩形中,是中点,所以在中,是中位线,所以,因为平面,平面,所以平面()因为平面,平面,所以;在矩形中有,又,所以平面,因为平面,所以;由已知,三角形是等腰直角三角形,是斜边的中点,所以,因为,所以平面,因为平面,所以平面平面18、(1)为奇函数,证明见解析(2)【解析】(1)由奇偶性定义直接判断即可;(2)化简函数得到,由此可知在上单调递增;利用奇偶性可化简所求不等式为,利用单调性解不等式即可.【小问1详解】为奇函数,证明如下:定义域,,为定义在上的奇函数.【小问2详解】,又在上单调递增,在上单调递增;由(1)知:,,,,即,,解得:,即实数的取值范围为.19、(1)w=1;(2)[0,].【解析】(1)求出函数的对称轴,求出求的值.(2)根据x的范围,利用三角函数的图像和性质求出f(x)的范围得解.【详解】(1)∵函数f(x)的图象关于直线对称,∴kπ,k∈Z,∴ω=1k,k∈Z,∵ω∈(0,2],∴ω=1,(2)f(x)=sin(2x),∵0≤x,∴2x,∴sin(2x)≤1,∴0≤f(x),∴函数f(x)的值域是[0,]【点睛】本题考查了正弦函数的单调性、值域问题,熟练掌握三角函数的性质是解题的关键20、(1),;(2)证明见解析;(3).【解析】(1)根据奇函数定义,利用且,列出关于、的方程组并解之得;(2)根据函数单调性的定义,任取实数、,通过作差因式分解可证出:当时,,即得函数在上为减函数;(3)根据函数的单调性和奇偶性,将不等式转化为:对任意的都成立,结合二次函数的图象与性质,可得的取值范围【详解】解:(1)为上的奇函数,,可得又(1),解之得经检验当且时,,满足是奇函数.(2)由(1)得,任取实数、,且则,可得,且,即,函数在上为减函数;(3)根据(1)(2)知,函数是奇函数且在上为减函数不等式恒成立,即也就是:对任意的都成立变量分离,得对任意的都成立,,当时有最小值为,即的范围是【点睛】本题以含有指数式的分式函数为例,研究了函数的单调性和奇偶性,并且用之解关于的不等式,考查了基本初等函数的简单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论