江西省吉安一中、九江一中等八所重点中学2023届数学高一上期末检测模拟试题含解析_第1页
江西省吉安一中、九江一中等八所重点中学2023届数学高一上期末检测模拟试题含解析_第2页
江西省吉安一中、九江一中等八所重点中学2023届数学高一上期末检测模拟试题含解析_第3页
江西省吉安一中、九江一中等八所重点中学2023届数学高一上期末检测模拟试题含解析_第4页
江西省吉安一中、九江一中等八所重点中学2023届数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知,,,则、、的大小关系为()A. B.C. D.2.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.3.已知,,,则a、b、c的大小关系为()A. B.C. D.4.设,且,则下列不等式一定成立的是()A. B.C. D.5.已知为锐角,且,,则A. B.C. D.6.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.7.已知直线、、与平面、,下列命题正确的是()A若,则 B.若,则C.若,则 D.若,则8.化简:A.1 B.C. D.29.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数10.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,6111.函数是()A.奇函数,且上单调递增 B.奇函数,且在上单调递减C.偶函数,且在上单调递增 D.偶函数,且在上单调递减12.已知集合,,则集合A. B.C. D.二、填空题(本大题共4小题,共20分)13.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________14.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________15.已知函数,若正实数,满足,则的最小值是____________16.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.三、解答题(本大题共6小题,共70分)17.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,试求实数的取值范围18.已知函数,且.(1)求实数及的值;(2)判断函数的奇偶性并证明.19.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值20.已知向量=(3,4),=(-1,2)(1)求向量与夹角的余弦值;(2)若向量-与+2平行,求λ的值21.近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量(单位:mg/L)与过滤时间(单位:h)间的关系为(,均为非零常数,e为自然对数的底数),其中为时的污染物数量.若经过5h过滤后还剩余90%的污染物.(1)求常数的值;(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:,,,,)22.如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.2、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.3、A【解析】利用指数函数、对数函数、三角函数的知识判断出a、b、c的范围即可.【详解】因为,,所以故选:A4、D【解析】利用特殊值及不等式的性质判断可得;【详解】解:因为,对于A,若,,满足,但是,故A错误;对于B:当时,,故B错误;对于C:当时没有意义,故C错误;对于D:因为,所以,故D正确;故选:D5、B【解析】∵为锐角,且∴∵,即∴,即∴∴故选B6、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题7、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因,所以平面内存在直线,若,则,且,所以,故D正确.故选:D8、C【解析】根据二倍角公式以及两角差的余弦公式进行化简即可.【详解】原式.故选C.【点睛】这个题目考查了二倍角公式的应用,涉及两角差的余弦公式以及特殊角的三角函数值的应用属于基础题.9、A【解析】由题可得,根据正弦函数的性质即得.【详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.10、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B11、A【解析】根据函数奇偶性和单调性的定义判定函数的性质即可.【详解】解:根据题意,函数,有,所以是奇函数,选项C,D错误;设,则有,又由,则,,则,则在上单调递增,选项A正确,选项B错误.故选:A.12、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.二、填空题(本大题共4小题,共20分)13、【解析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解.【详解】由弦长为2,圆心角为2可知扇形所在圆的半径,故,故答案为:14、【解析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【点睛】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.15、9【解析】根据指数的运算法则,可求得,根据基本不等式中“1”的代换,化简计算,即可得答案.【详解】由题意得,所以,所以,当且仅当,即时取等号,所以的最小值是9故答案为:916、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.三、解答题(本大题共6小题,共70分)17、(1)[-4,﹢∞);(2)【解析】(1)将原函数转化为二次函数,根据求二次函数最值的方法求解即可.(2)由题意得,求得,然后通过解对数不等式可得所求范围【详解】(1)由题意得,即的值域为[-4,﹢∞).(2)由不等式对任意实数恒成立得,又,设,则,∴,∴当时,=∴,即,整理得,即,解得,∴实数x的取值范围为【点睛】解答本题时注意一下两点:(1)解决对数型问题时,可通过换元的方法转化为二次函数的问题处理,解题时注意转化思想方法的运用;(2)对于函数恒成立的问题,可根据题意转化成求函数的最值的问题处理,特别是对于双变量的问题,解题时要注意分清谁是主变量,谁是参数18、(1),;(2)是奇函数,证明见解析.【解析】(1)根据,代入计算可得的值,即可求出函数的解析式,再代入计算可得;(2)首先求出函数的定义域,再计算即可判断;【详解】解:(1)因为,且.所以解得,所以所以(2)由(1)可得.因为函数的定义域为,关于原点对称且,所以是奇函数.19、(1)见解析;(2).【解析】(1)通过和得到平面,利用等腰三角形的性质可得,可得结论;(2)过点作,垂足为,连接,证得是二面角的平面角,在中先求出,然后在中求出结论.试题解析:(1)证明:在四棱锥中,因底面,平面,故.由条件,,∴平面.又平面,∴.由,,可得.∵是的中点,∴.又,综上得平面.(2)过点作,垂足为,连接,由(1)知,平面,在平面内的射影是,则因此是二面角的平面角由已知,可得.设,可得,,,在中,∵,∴,则,在中,.20、(1);(2)-2.【解析】(1)利用平面向量的数量积公式求出夹角的余弦值;(2)根据向量平行的坐标关系得到λ的方程,求值【详解】向量=(3,4),=(-1,2)(1)向量与夹角的余弦值;(2)向量-=(3+λ,4-2λ)与+2=(1,8)平行,则8(3+λ)=4-2λ,解得λ=-2【点睛】本题考查了平面向量数量积公式的运用以及向量平行的坐标关系,属于基础题21、(1)(2)42h【解析】(1)根据题意,得到,求解,即可得出结果;(2)根据(1)的结果,得到,由题意得到,求解,即可得出结果.【详解】(1)由已知得,当时,;当时,.于是有,解得(或).(2)由(1)知,当时,有,解得.故污染物减少到40%至少需要42h.【点睛】本题主要考查函数模型的应用,熟记指数函数的性质即可,属于常考题型.22、(1)同解析(2)异面直线PB与CD所成的角的余弦值为.(3)点A到平面PCD的距离d=【解析】解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD=·2=.又S△=设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=.解法二:(Ⅰ)同解法一,(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.则A(0,-1,0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论