青海西宁二十一中2022年高一上数学期末联考试题含解析_第1页
青海西宁二十一中2022年高一上数学期末联考试题含解析_第2页
青海西宁二十一中2022年高一上数学期末联考试题含解析_第3页
青海西宁二十一中2022年高一上数学期末联考试题含解析_第4页
青海西宁二十一中2022年高一上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为()A. B.C. D.2.已知是上的偶函数,在上单调递增,且,则下列不等式成立的是()A. B.C. D.3.若全集,且,则()A.或 B.或C. D.或.4.已知点在外,则直线与圆的位置关系为()A.相交B.相切C.相离D.相交、相切、相离三种情况均有可能5.集合,,将集合A,B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为2的是()A. B.C. D.6.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值7.已知,则的值为()A B.1C. D.8.如图,一个直三棱柱形容器中盛有水,且侧棱.若侧面水平放置时,液面恰好过的中点,当底面ABC水平放置时,液面高为()A.6 B.7C.2 D.49.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到10.设函数,A3 B.6C.9 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________12.已知函数,则函数的所有零点之和为________13.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.14.正三棱锥中,,则二面角的大小为__________15.若关于的不等式对任意的恒成立,则实数的取值范围为____________16.已知函数,则无论取何值,图象恒过的定点坐标______;若在上单调递减,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围18.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.19.已知函数,(1)求在上的最小值;(2)记集合,,若,求的取值范围.20.已知函数在上的最小值为(1)求的单调递增区间;(2)当时,求最大值以及此时x的取值集合21.已知函数.(1),,求的单调递减区间;(2)若,,的最大值是,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据圆心在直线上,设圆心坐标为,然后根据圆C与直线及都相切,由求解.【详解】因为圆心在直线上,设圆心坐标为,因为圆C与直线及都相切,所以,解得,∴圆心坐标为,又,∴,∴圆的方程为,故选:D.2、B【解析】根据函数的奇偶性和函数的单调性判断函数值的大小即可.【详解】因为是上的偶函数,在上单调递增,所以在上单调递减,.又因为,因为,在上单调递减,所以,即.故选:B.3、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.4、A【解析】结合点与圆的位置关系,直线和圆的位置关系列不等式,由此确定正确答案.【详解】是圆C:外一点,,圆心到直线的距离:,直线与圆相交故选:A5、B【解析】首先求出集合,再结合韦恩图及交集、并集、补集的定义计算可得;【详解】解:∵,,∴,则,,选项A中阴影部分表示的集合为,即,故A错误;选项B中阴影部分表示的集合由属于A但不属于B的元素构成,即,故B正确;选项C中阴影部分表示的集合由属于B但不属于A的元素构成,即,有1个元素,故C错误;选项D中阴影部分表示的集合由属于但不属于的元素构成,即,故D错误故选:B6、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.7、A【解析】知切求弦,利用商的关系,即可得解.【详解】,故选:A8、A【解析】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,由已知条件求出水的体积;当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,故水的体积可以用三角形的面积直接表示出,计算即可得答案【详解】根据题意,当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形,设△ABC的面积为S,则S梯形=S,水的体积V水=S×AA1=6S,当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh=6S,故h=6故选A【点睛】本题考点是棱柱的体积计算,考查用体积公式来求高,考查转化思想以及计算能力,属于基础题9、D【解析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【详解】变换到,需要向右平移个单位.故选:D【点睛】函数图像平移异名化同名的公式:,.10、C【解析】.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.12、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:013、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题14、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以15、【解析】根据题意显然可知,整理不等式得:,令,求出在的范围即可求出答案.【详解】由题意知:,即对任意的恒成立,当,得:,即对任意的恒成立,即对任意的恒成立,令,在上单减,所以,所以.故答案为:16、①.②.【解析】计算的值,可得出定点坐标;分析可知,对任意的,,利用参变量分离法可求得,分、、三种情况讨论,分析函数在上的单调性,由此可得出实数的取值范围.【详解】因为,故函数图象恒过的定点坐标为;由题意可知,对任意的,,则,因为函数在上单调递增,且当时,,所以,.当时,在上为减函数,函数为增函数,所以,函数、在上均为减函数,此时,函数在上为减函数,合乎题意;当且时,,不合乎题意;当时,在上为增函数,函数为增函数,函数、在上均为增函数,此时,函数在上为增函数,不合乎题意.综上所述,若在上单调递减,.故答案为:;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.18、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种情况分类讨论,求出最值解不等式即可.【详解】(1)时,函数定义域为解得不等式的解集为(2)设,由题意知,解得,在上恒成立在上恒成立令,的图象是开口向下,对称轴方程为的抛物线.①时,上恒成立等价于解得,这与矛盾.②当时,在上恒成立等价于解得或又综上所述,实数的取值范围是【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.19、(1)答案见解析(2)【解析】(1)按对称轴与区间的相对位置关系,分三种情况讨论求最小值;(2)分与解不等式,再分析的情况即可求解.【小问1详解】解:(1)由,抛物线开口向上,对称轴为,在上的最小值需考虑对称轴与区间的位置关系.(i)当时,;(ii)当时,;(ⅲ)当时,【小问2详解】(2)解不等式,即,可得:当时,不等式的解为;当时,不等式的解为.(i)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时(ii)当时,要使不等式的解集与有交集,由得:,此时对称轴为,∴只需,即,得.所以此时无解.综上所述,的取值范围.20、(1);(2)最大值为,此时x的取值集合为.【解析】(1)利用二倍角公式化简函数,再利用余弦函数性质列式计算作答.(2)利用余弦函数性质直接计算作答.【小问1详解】依题意,,令,,解得,所以的单调递增区间为.【小问2详解】由(1)知,当时,,,解得,因此,,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论