![量子化学与群论基础6课件_第1页](http://file4.renrendoc.com/view/7881e0f44f90ec6dd987dd998ebd8e11/7881e0f44f90ec6dd987dd998ebd8e111.gif)
![量子化学与群论基础6课件_第2页](http://file4.renrendoc.com/view/7881e0f44f90ec6dd987dd998ebd8e11/7881e0f44f90ec6dd987dd998ebd8e112.gif)
![量子化学与群论基础6课件_第3页](http://file4.renrendoc.com/view/7881e0f44f90ec6dd987dd998ebd8e11/7881e0f44f90ec6dd987dd998ebd8e113.gif)
![量子化学与群论基础6课件_第4页](http://file4.renrendoc.com/view/7881e0f44f90ec6dd987dd998ebd8e11/7881e0f44f90ec6dd987dd998ebd8e114.gif)
![量子化学与群论基础6课件_第5页](http://file4.renrendoc.com/view/7881e0f44f90ec6dd987dd998ebd8e11/7881e0f44f90ec6dd987dd998ebd8e115.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3Many-electronatoms1TheSchrödingerequationofmany-electronatoms(Born-Oppenheimer
Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchrödingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The1
⑴IndependentparticlemodelTheSchrödingerequationSeparationofvariables⑴IndependentparticlemodelT2
⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,
n=1,2,3,……⑵MeanfieldmodelAnelectro3Symmetric,Bosons
Antisymmetric,Fermions
⑵ThePauliprinciple
Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri4⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz5
4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T6⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14
p3,d5,f7
p0,d0,f0⑶Hund’srulep6,d10,f14 7⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchrödingerequation5Molecules5.1Hydrogen
Molecule
Ion(H2+)⑴TheSchrödingerequationofH2+⑵Atomicunits1a.umass=the8⑶TheSchrödingerequationofH2+ina.u①TheHamiltoniana.u②Schrödingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchrödingerequationof9①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchrödingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.
MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction10②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen11LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti12②TheenergyofH2+②TheenergyofH2+13Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin14TheseculardeterminantHaa=Hbb,
Hab=Hba,
Sab=Sba,and
c1=c2
Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:
c1=-c2TheseculardeterminantHaa=Hbb15③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol16④TheintegralsSab,HaaandHab
(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH17
(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral18(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+
,E2=Haa-Hab=-
HaaEa,soE1=Ea+
,E2=Ea-
(iii)Hab—exchangeintegral(19⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof20Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate21(iii)Antibondingorbital2(iii)Antibondingorbital222Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo235.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator
hasacomplicatedform.
=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory
theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory242.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction25(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C†CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)264.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets27Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform
Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat
isdiagonal,thiscanbewrittenasthematrixproduct
FC=SC
www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew28CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabinitioquan295.3TheHuckelMoleculorOrbitalmethod(HMO)HMOdealwithconjugatedmolecules.Butadiene,e.g.:61s+4(1s22s22px12py12pz0)=26AOHMOapproximation:4pz.Inhisapproach,Theorbitalsaretreatedseparatelyfromtheorbitals,andthelatterformarigidframeworkthatdeterminetheshapeofthemolecule.⑴HuckelapproximationIHMOissuggestedbyEricHückelin1931.5.3TheHuckelMoleculorOrb30Butadiene4pzofCatomsButadiene4pzofCatoms31Theenergyandcoefficientssatisfythefollowingequations:let
Thebestmolecularorbitalsarethosewhichminimisethetotalenergy.Thisisachievedbyimposingthecondition::Theenergyandcoefficientss32⑵HuckelapproximationII:non-trivialsolutions:Thesevalues,calledthenon-trivialsolutionstotheseequations,occurwhen:⑵HuckelapproximationII:no33letThisdeterminantcanbeeasilymultipliedouttogive:x4-3x2+1=0letThisdeterminantcanbeeas341=0.37171+0.60152+0.60153+0.371742=0.60151+0.37172—0.37173—0.601543=0.60151—0.37172—0.37173+0.601544=0.37171—0.60152+0.60153—0.37174<0,soE1<E2<E3<E4WeobtainfourvaluesofE,whichisreasonablesinceweexpecttofindfourmolecularorbitals.1=0.37171+0.60152+0.60153+35DelocalizationenergyTotalenergyE=2E1+2E2=2×(+1.62)+2×(+0.62)=4+4.48EnergylevelsOccupiedorbitalUnfilledorbitalC=C—C=CE’=4+4E-E’=0.48FrontierorbitalsThehighestoccupiedmolecularorbital,HOMOThelowestunfilledmolecularorbital,LUMOThefrontierorbitalsareimportantbecausetheyarelargelyresponsibleformanyofthechemicalandspectroscopicpropertiesofthemolecule.DelocalizationenergyEnergyl366.3Many-electronatoms1TheSchrödingerequationofmany-electronatoms(Born-Oppenheimer
Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchrödingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The37
⑴IndependentparticlemodelTheSchrödingerequationSeparationofvariables⑴IndependentparticlemodelT38
⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,
n=1,2,3,……⑵MeanfieldmodelAnelectro39Symmetric,Bosons
Antisymmetric,Fermions
⑵ThePauliprinciple
Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri40⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz41
4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T42⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14
p3,d5,f7
p0,d0,f0⑶Hund’srulep6,d10,f14 43⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchrödingerequation5Molecules5.1Hydrogen
Molecule
Ion(H2+)⑴TheSchrödingerequationofH2+⑵Atomicunits1a.umass=the44⑶TheSchrödingerequationofH2+ina.u①TheHamiltoniana.u②Schrödingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchrödingerequationof45①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchrödingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.
MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction46②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen47LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti48②TheenergyofH2+②TheenergyofH2+49Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin50TheseculardeterminantHaa=Hbb,
Hab=Hba,
Sab=Sba,and
c1=c2
Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:
c1=-c2TheseculardeterminantHaa=Hbb51③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol52④TheintegralsSab,HaaandHab
(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH53
(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral54(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+
,E2=Haa-Hab=-
HaaEa,soE1=Ea+
,E2=Ea-
(iii)Hab—exchangeintegral(55⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof56Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate57(iii)Antibondingorbital2(iii)Antibondingorbital258Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo595.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator
hasacomplicatedform.
=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory
theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory602.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction61(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C†CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)624.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets63Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform
Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat
isdiagonal,thiscanbewrittenasthematrixproduct
FC=SC
www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew64CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabiniti
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3万吨年水处理剂技改项目安全条件论证报告 2
- 项目申请书模板
- 2025年歧化松香酸钠项目投资可行性研究分析报告
- 物流系统规划与设计的现代化技术应用
- 电商与网络直播的融合创新商业模式探索
- 汽车交通信号灯架项目可行性研究报告申请报告
- 贫困申请书怎么
- 2024其他农畜产品批发行业影响因素分析
- 汉语儿童语音象征感知特征及其对词汇习得的作用研究
- 《经纬家教家风馆展陈大纲》汉英翻译实践报告
- 运动会活动流程中的医疗安全保障措施
- 2025年冷链物流产品配送及仓储管理承包合同3篇
- 电镀产业园项目可行性研究报告(专业经典案例)
- 2025年鲁泰集团招聘170人高频重点提升(共500题)附带答案详解
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 企业员工食堂管理制度框架
- 【开题报告】中小学校铸牢中华民族共同体意识教育研究
- 2024-2025学年云南省大理州七年级(上)期末英语试卷(含答案)
- 中国远洋海运集团招聘笔试冲刺题2025
- 2025中国水利水电第十二工程局限公司招聘400人高频重点提升(共500题)附带答案详解
- 《辣椒主要病虫害》课件
评论
0/150
提交评论