量子化学与群论基础6课件_第1页
量子化学与群论基础6课件_第2页
量子化学与群论基础6课件_第3页
量子化学与群论基础6课件_第4页
量子化学与群论基础6课件_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.3Many-electronatoms1TheSchrödingerequationofmany-electronatoms(Born-Oppenheimer

Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchrödingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The1

⑴IndependentparticlemodelTheSchrödingerequationSeparationofvariables⑴IndependentparticlemodelT2

⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,

n=1,2,3,……⑵MeanfieldmodelAnelectro3Symmetric,Bosons

Antisymmetric,Fermions

⑵ThePauliprinciple

Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri4⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz5

4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T6⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14

p3,d5,f7

p0,d0,f0⑶Hund’srulep6,d10,f14 7⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchrödingerequation5Molecules5.1Hydrogen

Molecule

Ion(H2+)⑴TheSchrödingerequationofH2+⑵Atomicunits1a.umass=the8⑶TheSchrödingerequationofH2+ina.u①TheHamiltoniana.u②Schrödingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchrödingerequationof9①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchrödingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.

MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction10②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen11LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti12②TheenergyofH2+②TheenergyofH2+13Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin14TheseculardeterminantHaa=Hbb,

Hab=Hba,

Sab=Sba,and

c1=c2

Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:

c1=-c2TheseculardeterminantHaa=Hbb15③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol16④TheintegralsSab,HaaandHab

(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH17

(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral18(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+

,E2=Haa-Hab=-

HaaEa,soE1=Ea+

,E2=Ea-

(iii)Hab—exchangeintegral(19⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof20Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate21(iii)Antibondingorbital2(iii)Antibondingorbital222Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo235.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator

hasacomplicatedform.

=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory

theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory242.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction25(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C†CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)264.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets27Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform

Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat

isdiagonal,thiscanbewrittenasthematrixproduct

FC=SC

www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew28CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabinitioquan295.3TheHuckelMoleculorOrbitalmethod(HMO)HMOdealwithconjugatedmolecules.Butadiene,e.g.:61s+4(1s22s22px12py12pz0)=26AOHMOapproximation:4pz.Inhisapproach,Theorbitalsaretreatedseparatelyfromtheorbitals,andthelatterformarigidframeworkthatdeterminetheshapeofthemolecule.⑴HuckelapproximationIHMOissuggestedbyEricHückelin1931.5.3TheHuckelMoleculorOrb30Butadiene4pzofCatomsButadiene4pzofCatoms31Theenergyandcoefficientssatisfythefollowingequations:let

Thebestmolecularorbitalsarethosewhichminimisethetotalenergy.Thisisachievedbyimposingthecondition::Theenergyandcoefficientss32⑵HuckelapproximationII:non-trivialsolutions:Thesevalues,calledthenon-trivialsolutionstotheseequations,occurwhen:⑵HuckelapproximationII:no33letThisdeterminantcanbeeasilymultipliedouttogive:x4-3x2+1=0letThisdeterminantcanbeeas341=0.37171+0.60152+0.60153+0.371742=0.60151+0.37172—0.37173—0.601543=0.60151—0.37172—0.37173+0.601544=0.37171—0.60152+0.60153—0.37174<0,soE1<E2<E3<E4WeobtainfourvaluesofE,whichisreasonablesinceweexpecttofindfourmolecularorbitals.1=0.37171+0.60152+0.60153+35DelocalizationenergyTotalenergyE=2E1+2E2=2×(+1.62)+2×(+0.62)=4+4.48EnergylevelsOccupiedorbitalUnfilledorbitalC=C—C=CE’=4+4E-E’=0.48FrontierorbitalsThehighestoccupiedmolecularorbital,HOMOThelowestunfilledmolecularorbital,LUMOThefrontierorbitalsareimportantbecausetheyarelargelyresponsibleformanyofthechemicalandspectroscopicpropertiesofthemolecule.DelocalizationenergyEnergyl366.3Many-electronatoms1TheSchrödingerequationofmany-electronatoms(Born-Oppenheimer

Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchrödingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The37

⑴IndependentparticlemodelTheSchrödingerequationSeparationofvariables⑴IndependentparticlemodelT38

⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,

n=1,2,3,……⑵MeanfieldmodelAnelectro39Symmetric,Bosons

Antisymmetric,Fermions

⑵ThePauliprinciple

Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri40⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz41

4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T42⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14

p3,d5,f7

p0,d0,f0⑶Hund’srulep6,d10,f14 43⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchrödingerequation5Molecules5.1Hydrogen

Molecule

Ion(H2+)⑴TheSchrödingerequationofH2+⑵Atomicunits1a.umass=the44⑶TheSchrödingerequationofH2+ina.u①TheHamiltoniana.u②Schrödingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchrödingerequationof45①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchrödingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.

MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction46②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen47LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti48②TheenergyofH2+②TheenergyofH2+49Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin50TheseculardeterminantHaa=Hbb,

Hab=Hba,

Sab=Sba,and

c1=c2

Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:

c1=-c2TheseculardeterminantHaa=Hbb51③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol52④TheintegralsSab,HaaandHab

(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH53

(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral54(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+

,E2=Haa-Hab=-

HaaEa,soE1=Ea+

,E2=Ea-

(iii)Hab—exchangeintegral(55⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof56Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate57(iii)Antibondingorbital2(iii)Antibondingorbital258Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo595.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator

hasacomplicatedform.

=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory

theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory602.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction61(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C†CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)624.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets63Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform

Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat

isdiagonal,thiscanbewrittenasthematrixproduct

FC=SC

www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew64CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabiniti

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论