版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.2.在中,在边上满足,为的中点,则().A. B. C. D.3.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.4.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.5.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为()A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间6.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.7.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题8.已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则()A. B. C. D.9.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多10.已知.给出下列判断:①若,且,则;②存在使得的图象向右平移个单位长度后得到的图象关于轴对称;③若在上恰有7个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为()A.1 B.2 C.3 D.411.已知某几何体的三视图如图所示,则该几何体外接球的表面积为()A. B. C. D.12.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知正项等比数列中,,则__________.14.已知函数则______.15.在△ABC中,()⊥(>1),若角A的最大值为,则实数的值是_______.16.若,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.18.(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19.(12分)在中,角、、的对边分别为、、,且.(1)若,,求的值;(2)若,求的值.20.(12分)如图,在直三棱柱中,,点P,Q分别为,的中点.求证:(1)PQ平面;(2)平面.21.(12分)如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点且,,,.求证:平面平面以;求二面角的大小.22.(10分)已知函数,.(1)当时,①求函数在点处的切线方程;②比较与的大小;(2)当时,若对时,,且有唯一零点,证明:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【题目详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【答案点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.2.B【答案解析】
由,可得,,再将代入即可.【题目详解】因为,所以,故.故选:B.【答案点睛】本题考查平面向量的线性运算性质以及平面向量基本定理的应用,是一道基础题.3.C【答案解析】
先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【题目详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【答案点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.4.A【答案解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【题目详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【答案点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.5.D【答案解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【题目详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.故选:D【答案点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题6.C【答案解析】
由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【题目详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【答案点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.7.D【答案解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.8.A【答案解析】
由已知可得,根据二倍角公式即可求解.【题目详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【答案点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.9.D【答案解析】
根据两个图形的数据进行观察比较,即可判断各选项的真假.【题目详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【答案点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.10.B【答案解析】
对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【题目详解】因为,所以周期.对于①,因为,所以,即,故①错误;对于②,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故③正确;对于④,因为,且,所以,解得,又,所以,故④正确.故选:B.【答案点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.11.C【答案解析】
由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,利用正弦定理求出底面三角形外接圆的半径,根据三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,求出球的半径,即可求解球的表面积.【题目详解】由三视图可知,几何体是一个三棱柱,三棱柱的底面是底边为,高为的等腰三角形,侧棱长为,如图:由底面边长可知,底面三角形的顶角为,由正弦定理可得,解得,三棱柱的两底面中心连线的中点就是三棱柱的外接球的球心,所以,该几何体外接球的表面积为:.故选:C【答案点睛】本题考查了多面体的内切球与外接球问题,由三视图求几何体的表面积,考查了学生的空间想象能力,属于基础题.12.A【答案解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【题目详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.【答案点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【题目详解】由,所以,解得.,所以,所以.故答案为:【答案点睛】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.14.【答案解析】
先由解析式求得(2),再求(2).【题目详解】(2),,所以(2),故答案为:【答案点睛】本题考查对数、指数的运算性质,分段函数求值关键是“对号入座”,属于容易题.15.1【答案解析】
把向量进行转化,用表示,利用基本不等式可求实数的值.【题目详解】,解得=1.故答案为:1.【答案点睛】本题主要考查平面向量的数量积应用,综合了基本不等式,侧重考查数学运算的核心素养.16.8【答案解析】
根据,利用基本不等式可求得函数最值.【题目详解】,,当且仅当且,即时,等号成立.时,取得最小值.故答案为:【答案点睛】本题考查基本不等式,构造基本不等式的形式是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)3;(2);(3)见解析.【答案解析】
(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。【题目详解】(1)因为对任意,都有,所以,,两式相加,,解得;(2)设等比数列的首项为,公比为,因为对任意,都有,所以有,解得,又,即有,化简得,,即,或,因为,化简得,所以故。(3)因为对任意,都有,所以有,成等差数列,设公差为,,,,,由等差数列的定义知,也成等差数列。【答案点睛】本题主要考查等差、等比数列的定义以及赋值法的应用,意在考查学生的逻辑推理,数学建模,综合运用数列知识的能力。18.(1)(2)【答案解析】
(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和.【题目详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,,所以所以【答案点睛】本题考查求等比数列的通项公式,考查裂项相消法求和.解题方法是基本量法.基本量法是解决等差数列和等比数列的基本方法,务必掌握.19.(1);(2).【答案解析】
(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【题目详解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因为,所以,从而,所以.【答案点睛】本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.20.(1)见解析(2)见解析【答案解析】
(1)取的中点D,连结,.根据线面平行的判定定理即得;(2)先证,,和都是平面内的直线且交于点,由(1)得,再结合线面垂直的判定定理即得.【题目详解】(1)取的中点D,连结,.在中,P,D分别为,中点,,且.在直三棱柱中,,.Q为棱的中点,,且.,.四边形为平行四边形,从而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D为中点,.由(1)知,,.又,平面,平面,平面.【答案点睛】本题考查线面平行的判定定理,以及线面垂直的判定定理,难度不大.21.证明见解析;.【答案解析】
推导出,,从而平面,由此证明平面平面以;以为原点,建立空间直角坐标系,利用法向量求出二面角的大小.【题目详解】解:,,为的中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 1秋天(说课稿)-2024-2025学年统编版(2024)语文一年级上册
- 2024年绿色建筑评估与改进服务合同
- 2024校企合作电商企业实习实训基地协议3篇
- 18 《囊萤夜读》(说课稿)2023-2024学年统编版语文四年级下册
- 2024版专项宣传材料采购协议模板版B版
- 企业员工安全生产教育培训
- 福建省南平市五夫中学高三地理上学期期末试卷含解析
- 福建省南平市渭田中学2021年高二语文下学期期末试卷含解析
- 2024年高端木器定制加工劳务分包合同模板3篇
- 2024年跨境电商配送条款3篇
- 公路桥梁工程施工安全风险评估指南
- 2024-2030年全球及中国通过硅通孔(TSV)技术行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- PEP新人教版小学英语单词三到五年级
- 拆除猪场补偿协议书模板
- 2024年秋季学期新Join In剑桥版(三年级起)英语三年级上册课件 Supplementary activities Unit 6
- 2024年新人教版道德与法治七年级上册全册教案(新版教材)
- 2024年高中生物新教材同步选择性必修第三册学习笔记第3章 本章知识网络
- 初中物理期末复习+专题5+综合能力题+课件++人教版物理九年级全一册
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 2024年国开电大 统计学原理 形成性考核册答案
- 药物流行病学教学大纲
评论
0/150
提交评论