2022-2023学年沧州市重点中学八年级数学第一学期期末复习检测模拟试题含解析_第1页
2022-2023学年沧州市重点中学八年级数学第一学期期末复习检测模拟试题含解析_第2页
2022-2023学年沧州市重点中学八年级数学第一学期期末复习检测模拟试题含解析_第3页
2022-2023学年沧州市重点中学八年级数学第一学期期末复习检测模拟试题含解析_第4页
2022-2023学年沧州市重点中学八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若ax=3,ay=2,则a2x+y等于()A.18 B.8 C.7 D.62.等腰三角形的两边长分别是,.则它的周长是()A. B. C.或 D.3.若一个三角形的两边长分别为2和4,则第三边长可能是().A.1 B.2 C.3 D.74.如图,已知,点,,,...在射线上,点,,,...在射线上,,,,...均为等边三角形,若,则的边长是()A.4038 B.4036 C. D.5.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.-3xy C.-1 D.16.要使分式无意义,则的取值范围是()A. B. C. D.7.下列多项式①x²+xy-y²②-x²+2xy-y²③xy+x²+y²④1-x+x其中能用完全平方公式分解因式的是(

)A.①② B.①③ C.①④ D.②④8.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差9.如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.410.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=BC,若△ABC的面积为2,则△CDE的面积为()A. B. C. D.二、填空题(每小题3分,共24分)11.甲、乙二人做某种机械零件,己知甲每小时比乙多做6个,甲做90个零件所用的时间与乙做60个零件所用的时间相等.设甲每小时做x个零件,依题意列方程为_________.12.分解因式:mx2﹣4m=_____.13.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上以动点,则周长的最小值为_____________14.已知点A(3+2a,3a﹣5),点A到两坐标轴的距离相等,点A的坐标为_____.15.在平面直角坐标系中,点,,作,使与全等,则点C坐标为____点C不与点A重合16.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=______.17.计算__________.18.已知一个正数的两个平方根分别为和,则的值为__________.三、解答题(共66分)19.(10分)计算:(1)4(x﹣1)2﹣(2x+5)(2x﹣5);(2).20.(6分)解方程组:21.(6分)如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.22.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1,B1,C1;(2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是.(3)在y轴上是否存在点Q.使得S△ACQ=S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由.23.(8分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF,求证:CE=DF.24.(8分)如图,已知△ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出△ABC关于原点O成中心对称的图形△A′B′C′;(2)将△ABC绕原点O顺时针旋转90°,画出对应的△A″B″C″,并写出点B″的坐标.25.(10分)(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.26.(10分)已知:如图,,.求证:.(写出证明过程及依据)

参考答案一、选择题(每小题3分,共30分)1、A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【详解】解:∵ax=3,ay=2,

∴a2x+y=(ax)2×ay=32×2=1.

故选:A.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.2、A【分析】题目给出等腰三角形有两条边长为和,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当3cm是腰时,3+3<7,不能组成三角形,当7cm是腰时,7,7,3能够组成三角形.则三角形的周长为17cm.故选:A.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3、C【分析】利用三角形的三边关系定理求出第三边长的取值范围,由此即可得.【详解】设第三边长为,由三角形的三边关系定理得:,即,观察四个选项可知,只有选项C符合,故选:C.【点睛】本题考查了三角形的三边关系定理的应用,熟记三角形的三边关系定理是解题关键.4、D【分析】根据图形的变化发现规律即可得结论.【详解】解:观察图形的变化可知:

∵△A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形,

∵OA1=2,

∴△A1B1A2、△A2B2A3、△A3B3A4……

边长分别为:21、22、23…

∴△A2019B2019A2020的边长为1.

故选D.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是通过观察图形的变化寻找规律.5、A【详解】解:∵左边=-3xy(4y-2x-1)=-12xy2+6x2y+3xy右边=-12xy2+6x2y+□,∴□内上应填写3xy故选:A.6、A【分析】根据分式无意义,分母等于0列方程求解即可.【详解】∵分式无意义,∴x+1=0,解得x=-1.故选A.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(1)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.7、D【解析】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.故选D.8、B【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.9、C【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“HL”证明Rt△APO和Rt△BPO全等,根据全等三角形对应角相等可得,全等三角形对应边相等可得OA=OB.【详解】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故(1)正确;在Rt△APO和Rt△BPO中,,∴Rt△APO≌Rt△BPO(HL),∴∠APO=∠BPO,OA=OB,故(2)正确,∴PO平分∠APB,故(4)正确,OP垂直平分AB,但AB不一定垂直平分OP,故(3)错误,故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,熟记性质与判定方法是解题的关键10、A【解析】先证明△ADB≌△EBD,从而可得到AD=DE,然后先求得△AEC的面积,接下来,可得到△CDE的面积.【详解】解:如图∵BD平分∠ABC,

∴∠ABD=∠EBD.

∵AE⊥BD,

∴∠ADB=∠EDB.

在△ADB和△EDB中,∠ABD=∠EBD,BD=BD,∠ADB=∠EDB,

∴△ADB≌△EBD,

∴AD=ED.∵CE=BC,△ABC的面积为2,

∴△AEC的面积为.

又∵AD=ED,

∴△CDE的面积=△AEC的面积=故选A.【点睛】本题主要考查的是全等三角形的判定,掌握等高的两个三角形的面积比等于底边长度之比是解题的关键.二、填空题(每小题3分,共24分)11、=【分析】设甲每小时做x个零件,则乙每小时做(x-6)个零件,再根据题中的等量关系即可列出方程.【详解】设甲每小时做x个零件,则乙每小时做(x-6)个零件,由甲做90个零件所用的时间与乙做60个零件所用的时间相等列出方程为=.【点睛】此题主要考查分式方程的应用,解题的关键是找出等量关系进行列方程.12、m(x+2)(x﹣2)【解析】提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.13、10【分析】根据线段的垂直平分线定理,可知C点与A点关于点E对称,此时MC=AM,,由于CD为定值,当MA+MD最小时,的周长才有最小值,而当A、M、D三点处于同一直线时,的周长取得最小值.【详解】如图,连接AM,可得:∵腰的垂直平分线分别交,边于,点∴根据两点之间线段最短,可得在等腰三角形ABC中,底边长为,面积是,∴,解得AD=8,【点睛】本题考查等腰三角形的面积计算以及线段的垂直平分线性质,熟练运用线段的垂直平分线性质是解题的关键.14、(19,19)或(,-)【解析】根据点A到两坐标轴的距离相等,分两种情况讨论:3+2a与3a﹣5相等;3+2a与3a﹣5互为相反数.【详解】根据题意,分两种情况讨论:①3+2a=3a﹣5,解得:a=8,∴3+2a=3a﹣5=19,∴点A的坐标为(19,19);②3+2a+3a﹣5=0,解得:a=,∴3+2a=,3a﹣5=﹣,∴点A的坐标为(,﹣).故点A的坐标为(19,19)或(,-),故答案为:(19,19)或(,-).【点睛】本题考查了点的坐标,解决本题的关键是根据点A到两坐标轴的距离相等,分两种情况讨论.15、或或【分析】根据全等三角形的判定和性质,结合已知的点画出图形,即可得出答案【详解】解:如图所示∵,∴OB=4,OA=2∵△BOC≌△ABO∴OB=OB=4,OA=OC=2∴故答案为:或或【点睛】本题考查坐标与全等三角形的性质和判定,注意要分多种情况讨论是解题的关键16、6或1【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=1,P、C重合.【详解】解:①当AP=CB时,

∵∠C=∠QAP=90°,

在Rt△ABC与Rt△QPA中,,

∴Rt△ABC≌Rt△QPA(HL),

即;

②当P运动到与C点重合时,AP=AC,

在Rt△ABC与Rt△QPA中,

,∴Rt△QAP≌Rt△BCA(HL),

即,

∴当点P与点C重合时,△ABC才能和△APQ全等.

综上所述,AP=6或1.

故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.17、【分析】根据同底数幂的乘法运算法则把改写成,再根据积的乘方进行运算即可.【详解】,====.故答案为:.【点睛】本题主要考查了幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.18、1【分析】根据可列式,求解到的值,再代入即可得到最后答案.【详解】解:和为一个正数的平方根,解得故答案为:1.【点睛】本题考查了平方根的知识,要注意到正数的平方根有两个,一正一负,互为相反数.三、解答题(共66分)19、(1)﹣8x+29;(2)【分析】(1)根据整式的乘除进行去括号,然后合并同类项,即可得出答案.(2)根据积的乘方进行去括号,然后根据分式的混合运算进行化简,即可得出答案.【详解】解:(1)原式=4x2﹣8x+4﹣4x2+25=﹣8x+29;(2)原式=【点睛】本题主要考察了整式的乘除、积的乘方以及分式的混合运算,正确运用法则进行运算是解题的关键.20、【解析】把①×3+②,消去y,求出x的值,再把求得的x的值代入①求出y的值即可.【详解】由①×3,得.③把③+②,得.解得.把代入①,得..∴原方程组的解是【点睛】本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.灵活选择合适的方法是解答本题的关键.21、证明过程见解析【解析】试题分析:由可得,由,根据等量代换可得,从而,接下来,依据垂线的定义可得到AB和CD的位置关系.证明:在中,,∴,又∵,∴,∴,∴.点睛:本题主要就是依据三角形的内角和定理和垂线的定义求解的.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线.22、(1)(﹣1,1),(﹣4,2),(﹣3,4);(2)(2,0);(3)存在,或.【分析】(1)作出A、B、C关于y轴的对称点A′、B′、C′即可得到坐标;(2)作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小;(3)存在.设Q(0,m),由S△ACQ=S△ABC可知三角形ACQ的面积,延长AC交y轴与点D,求出直线AC解析式及点D坐标,分点Q在点D上方和下方两种情况,构建方程即可解决问题.【详解】解:(1)△A1B1C1如图所示,A1(﹣1,1),B1(﹣4,2),C1(﹣3,4);故答案为:(﹣1,1),(﹣4,2),(﹣3,4);(2)如图作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小,此时点P的坐标是(2,0);故答案为:(2,0);(3)存在.设Q(0,m),S△ABC=(9﹣×2×3﹣×1×3﹣×1×2)∵S△ACQ=S△ABC,如图,延长AC交y轴与点D,设直线AC的解析式为将点代入得,解得所以所以点当点Q在点D上方时,连接CQ、AQ,,解得;当点Q在点D上方时,连接CQ、AQ,,解得,综合上述,点Q的坐标为或.【点睛】本题考查了平面直角坐标系中的轴对称,涉及了线段和的最小值问题及三角形面积问题,灵活的结合图形确定点P的位置及表示三角形的面积是解题的关键.23、见解析【分析】先根据AAS证明△AOC≌△BOD,得到AC=BD,再根据SAS证明△AEC≌△BFD,可证明CE=DF.【详解】证明:∵AC∥DB∴∠A=∠B在△AOC和△BOD中∵∴△AOC≌△BOD(AAS)∴AC=BD在△AEC和△BFD中∵∴△AEC≌△BFD(SAS)∴CE=DF【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.24、见解析【解析】(1)先找到三角形各顶点关于原点的对称点,再依次连接得到△A′B′C′;(1)先连接AO,BO,CO,依次旋转得到A’’,B’’,C’’,再依次连接即可,再根据直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论