




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
6.3实数
(第1课时)最新人教版初中数学精品课件设计6.3实数
(第1课时)最新人教版初中数学精品课件设计
本节先将有理数与有限小数和无限循环小数统一起来,再采用与有理数对照的方法引入无理数,接着类比用数轴上的点表示有理数,指出实数与数轴上的点的一一对应关系.课件说明最新人教版初中数学精品课件设计本节先将有理数与有限小数和无限循环小数统一起来学习目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.学习重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系.课件说明最新人教版初中数学精品课件设计学习目标:课件说明最新人教版初中数学精品课件设计1.探究新知有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?最新人教版初中数学精品课件设计1.探究新知有理数包括整数和分数,如果将下列分数写成小数的形1.探究新知你认为小数除了上述类型外,还会有什么类型的小数?最新人教版初中数学精品课件设计1.探究新知你认为小数除了上述类型外,还会有什么类型的小数?1.探究新知无理数的概念:无限不循环小数叫无理数.最新人教版初中数学精品课件设计1.探究新知无理数的概念:无限不循环小数叫无理数.最新人教版1.探究新知因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?最新人教版初中数学精品课件设计1.探究新知因为非零有理数和无理数都有正负之分,那么你能类比5,3.14,0,,,,,-
π,0.1010010001……(相邻两个1之间0的个数逐次加1).1.探究新知例1
下列实数中,哪些是有理数?哪些是无理数?最新人教版初中数学精品课件设计5,3.14,0,,,,,-π1.探究新知我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?最新人教版初中数学精品课件设计1.探究新知我们知道,每个有理数都可以用数轴上的点来表示,那1.探究新知为什么?直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O'对应的数是多少?最新人教版初中数学精品课件设计1.探究新知为什么?直径为1个单位长度的圆从原点沿数轴向右滚2.运用新知判断正误,并说明理由.(1)无理数都是无限小数;(2)实数包括正实数、0、负实数;(3)不带根号的数都是有理数;(4)所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数.最新人教版初中数学精品课件设计2.运用新知判断正误,并说明理由.最新人教版初中数学精品课2.运用新知把下列各数填入相应的集合内:①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④负实数集合:{…}.最新人教版初中数学精品课件设计2.运用新知把下列各数填入相应的集合内:最新人教版初中数学精2.运用新知练习1
下列各数中,哪些是有理数?哪些是无理数?最新人教版初中数学精品课件设计2.运用新知练习1下列各数中,哪些是有理数?哪些是无理数?2.运用新知…………有理数集合无理数集合练习2在下列每一个圈里,至少填入三个适当的数.最新人教版初中数学精品课件设计2.运用新知…………有理数集合无理数集合练习2最新人教版初中3.归纳总结问题1举例说明有理数和无理数的特点是什么?问题2实数是由哪些数组成的?问题3实数与数轴上的点有什么关系?最新人教版初中数学精品课件设计3.归纳总结问题1举例说明有理数和无理数的特点是什么?最4.布置作业教科书习题6.3第1、2题;教科书复习题6第6题.最新人教版初中数学精品课件设计4.布置作业教科书习题6.3第1、2题;最新人教版初中6.3实数
(第1课时)最新人教版初中数学精品课件设计6.3实数
(第1课时)最新人教版初中数学精品课件设计
本节先将有理数与有限小数和无限循环小数统一起来,再采用与有理数对照的方法引入无理数,接着类比用数轴上的点表示有理数,指出实数与数轴上的点的一一对应关系.课件说明最新人教版初中数学精品课件设计本节先将有理数与有限小数和无限循环小数统一起来学习目标:(1)了解无理数和实数的概念.(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.学习重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系.课件说明最新人教版初中数学精品课件设计学习目标:课件说明最新人教版初中数学精品课件设计1.探究新知有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?最新人教版初中数学精品课件设计1.探究新知有理数包括整数和分数,如果将下列分数写成小数的形1.探究新知你认为小数除了上述类型外,还会有什么类型的小数?最新人教版初中数学精品课件设计1.探究新知你认为小数除了上述类型外,还会有什么类型的小数?1.探究新知无理数的概念:无限不循环小数叫无理数.最新人教版初中数学精品课件设计1.探究新知无理数的概念:无限不循环小数叫无理数.最新人教版1.探究新知因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?最新人教版初中数学精品课件设计1.探究新知因为非零有理数和无理数都有正负之分,那么你能类比5,3.14,0,,,,,-
π,0.1010010001……(相邻两个1之间0的个数逐次加1).1.探究新知例1
下列实数中,哪些是有理数?哪些是无理数?最新人教版初中数学精品课件设计5,3.14,0,,,,,-π1.探究新知我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?最新人教版初中数学精品课件设计1.探究新知我们知道,每个有理数都可以用数轴上的点来表示,那1.探究新知为什么?直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O'对应的数是多少?最新人教版初中数学精品课件设计1.探究新知为什么?直径为1个单位长度的圆从原点沿数轴向右滚2.运用新知判断正误,并说明理由.(1)无理数都是无限小数;(2)实数包括正实数、0、负实数;(3)不带根号的数都是有理数;(4)所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数.最新人教版初中数学精品课件设计2.运用新知判断正误,并说明理由.最新人教版初中数学精品课2.运用新知把下列各数填入相应的集合内:①有理数集合:{…};②无理数集合:{…};③正实数集合:{…};④负实数集合:{…}.最新人教版初中数学精品课件设计2.运用新知把下列各数填入相应的集合内:最新人教版初中数学精2.运用新知练习1
下列各数中,哪些是有理数?哪些是无理数?最新人教版初中数学精品课件设计2.运用新知练习1下列各数中,哪些是有理数?哪些是无理数?2.运用新知…………有理数集合无理数集合练习2在下列每一个圈里,至少填入三个适当的数.最新人教版初中数学精品课件设计2.运用新知…………有理数集合无理数集合练习2最新人教版初中3.归纳总结问题1举例说明有理数和无理数的特点是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 排气温度管理考核试卷
- 健康工作场所案例分析考核试卷
- 医学模拟培训在传染病防控中的应用考核试卷
- 会展物流配送中的大数据分析应用考核试卷
- 体育经纪人职业压力与心理疲劳的关系分析考核试卷
- 儿童节活动总结(集锦15篇)
- 保健医生个人工作总结(集合13篇)
- 会计基础知识
- 楼盘送菜活动方案
- 桂园开业活动方案
- 2025年内蒙古自治区中考数学真题试卷(含答案)
- CT增强扫描造影剂外渗的预防与处理
- Unit 2 Home Sweet Home 第6课时(Project Reading Plus) 2025-2026学年人教版英语八年级下册
- 孤独症业务管理制度
- xx公司奖金管理制度
- 劳务服务购买协议书范本
- 2025-2030年中国生物医学材料行业市场深度分析及发展前景与投资研究报告
- 2025年小学语文一年级下册无纸笔测试题(小学一年级游园乐考无纸化检测)
- 2025至2030中国弹簧钢行业产业运行态势及投资规划深度研究报告
- 学习解读《水利水电建设工程验收规程》SLT223-2025课件
- 部编版六年级语文上册古诗、文言文日积月累(必背)
评论
0/150
提交评论