版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)TOC\o"1-5"\h\z(3分)-( )A.-2 B.1 C.A D.22 2(3分)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为( )A.7.55X106B.75.5X106C.7.55X107D.75.5X107(3分)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是( )/—7__\) /—7__\) PA. C. 4.(3分)如图,直线直线C分别交4若Nl=130°,则N2的度数是( )B C\bA.30° B.40°(3分)下列运算正确的是( )A 2.3 6A.a•a—crC.(-2a2)3=_8a6土一人于点A,C,点3在直线b上,ABLAC,50° D.70°B.3a-2a=1D.a6-ra2=a36.(3分)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,TOC\o"1-5"\h\z40,则这组数据的众数和中位数分别是( )A.35,35 B.34,33 C.34,35 D.35,34(3分)与24Vl^最接近的整数是( )A.4 B.5 C.6 D.7(3分)抛物线y=^x+l经平移后,不可能得到的抛物线是( )2A.y=- B.y=--kr2-42 2C.y=--=^+202lx-2022 D.y=-x1+x+12(3分)已知关于x的方程x2-(2w-1)x+w2=0的两实数根为x\,X2,若(xi+1)(A2+1)=3,则m的值为( )A.-3 B.-1 C.-3或1 D.-1或3(3分)如图,AB是。O的直径,OD垂直于弦AC于点D,DO的延长线交。。于点E.若AC=4&,DE=4,则8c的长是( )EA.1 B.V2 C.2 D.4(3分)如图,在平面直角坐标系中,矩形。4BC的顶点B的坐标为(10,4),四边形ABE尸是菱形,且tan/ABE=_l.若直线/把矩形OABC和菱形A8EF组成的图形3的面积分成相等的两部分,则直线/的解析式为( )CxB.y=- C.y=-2x+l1D.y=-2x+1242(3分)如图,在边长为3的正方形ABC。中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角NCBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则的长为( )二、填空题(本大题共4个小题,每小题3分,共12分).(3分)点(-2,3)关于原点的对称点的坐标为.(3分)若(a-2)2+|&+3|=0,则帅=.(3分)若方程三3+1=旦的解使关于x的不等式(2-a)x-3>0成立,则实数ax-2 2-x的取值范围是.(3分)如图,在Rt/XABC中,NC=90°,AC=6,BC=2M,半径为1的0。在Rt△A8C内平移(OO可以与该三角形的边相切),则点A到。。上的点的距离的最大值为.(6分)计算:°+21+J^cos45°-|-A|.2(6分)如图,E,尸分别是nABCC的边AB,上的点,已知AE=C尸.求证:DE=BF.AEBAEB2 9.(6分)化简:(.二3贮1一+1)m m四、本大题共2个小题,每小题7分,共14分.(7分)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了“名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间f(单位:小时)0.50V1频数12iWfV1.5a1.5&V22820V2.5162.5〈忘34(2)若该校学生有640人,试估计劳动时间在范围的学生有多少人?(3)劳动时间在2.5<rW3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率./D\4:0.5<t<l金、C\B:l<t<1.5隹二〉C:1.5<t<2\A/\D:2<t<2.5\15yb、/E:2.5<t<3(7分)某经销商计划购进A,8两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进4种农产品1件,B种农产品4件,共需720元.A,8两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进4,8两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,8两种农产品各多少件时获利最多?五、本大题共2个小题,每小题8分,共16分.
(8分)如图,直线y=-旦x+b与反比例函数y=12的图象相交于点A,B,已知点A
2 x的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△4BC的面积为3,求点C的坐标.(8分)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛。位于南偏东30°方向,且A,。相距该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8如nmile.求8,。间的距离(计算过程中的数据不取近似值).DD六、本大题共2个小题,每小题12分,共24分.(12分)如图,点C在以AB为直径的。。上,CO平分/AC8交。。于点O,交AB于点E,过点。作。。的切线交CO的延长线于点F.(1)求证:FD//AB;(2)若AC=2^,BC=A,求FD的长.
(12分)如图,在平面直角坐标系x0y中,已知抛物线yna^+x+c经过A(-2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△B。。与△OCE的面积相等,求直线OE的解析式;P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,尸为顶点的四边形是以B尸为一边的矩形?若存在,求出点尸的坐标:若不存在,请说明理由.2022年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(3分)-y=()A.-2 B., C.A D.22【分析】根据算术平方根的定义判断即可.【解答】解:-a/4=-^[2^=-2"故选:A.【点评】本题考查了算术平方根,掌握算术平方根的定义是解答本题的关键.(3分)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为( )A.7.55X106B.75.5X106C.7.55X107D.75.5X107【分析】科学记数法的表示形式为。义10"的形式,其中n为整数.确定〃的值时,要看把原数变成a时,小数点移动了多少位,〃的绝对值与小数点移动的位数相同.当原数绝对值21。时,〃是正整数:当原数的绝对值VI时,〃是负整数.【解答】解:75500000=7.55X107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为aX10"的形式,其中〃为整数,表示时关键要正确确定a的值以及〃的值.(3分)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是( )
c.c.【分析】细心观察图中几何体中正方体摆放的位置,根据俯视图是从上面看到的图形判定则可.【解答】解:从物体上面看,底层有一个正方形,上层有四个正方形.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误地选其它选项.(3分)如图,直线a〃b,直线c分别交a,6于点A,C,点8在直线。上,ABS.AC,C.5C.50°D.70°【分析】首先利用平行线的性质得到N1=NOAC,然后利用得到N8AC=90°,最后利用角的和差关系求解.【解答】解:如图所示,:.Zl=ZDAC,;21=130°,4c=130°,又;AB_LAC,.,.ZBAC=90°,.*.Z2=ZDAC-ZBAC=130°-90°=40°.故选:B./\1~B C\~d【点评】本题考查平行线的性质,解答本题的关键是明确平行线的性质,求出ND4C的度数.(3分)下列运算正确的是( )a2,a3=a6 B.3a-2a=1C.(-2a2)=-8〃6 d.a6-ra2=a3【分析】选项A根据同底数幕的乘法法则判断即可,同底数幕的乘法法则:同底数鼎相乘,底数不变,指数相加;选项B根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变:选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的某相乘;选项。根据同底数基的除法法则判断即可,同底数幕的除法法则:底数不变,指数相减.【解答】解:A.。2./="5,故本选项不合题意;3a-2a=a,故本选项不合题意;(-2a2)3=-85,故本选项符合题意;c^-^a2=a4,故本选项不合题意;故选:C.【点评】本题考查了同底数基的乘除法,累的乘方与积的乘方以及合并同类项,掌握相关运算法则是解答本题的关键.(3分)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35.35,40,则这组数据的众数和中位数分别是( )A.35,35 B,34,33 C,34,35 D.35,34【分析】根据中位数和众数的定义求解可得.【解答】解::35出现的次数最多,这组数据的众数是35,把这些数从小到大排列,排在中间的两个数分别为33、35,故中位数为巡咨=34,故选:D.【点评】本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(3分)与2+J记最接近的整数是( )A.4 B.5 C.6 D.7【分析】估算无理数任的大小,再确定我更接近的整数,进而得出答案.【解答】解:/元<4,而15-9>16-15,•••4元更接近4,,2+任更接近6,故选:C.【点评】本题考查估算无理数的大小,理解算术平方根的定义以及数的大小关系是正确解答的前提.(3分)抛物线y=-尹+x+l经平移后,不可能得到的抛物线是( )A.y=- B.y=--lx2-42 2C.y=--1^+202lx-2022 D.y=-x1+x+]2【分析】根据抛物线的平移规律,可得答案.【解答】解:•.•将抛物线y=-/+x+l经过平移后开口方向不变,开口大小也不变,二抛物线y=-尹+x+l经过平移后不可能得到的抛物线是y=-f+x+1.故选:D.【点评】本题考查了二次函数图象与几何变换,由平移规律得出。不变是解题的关键.(3分)已知关于x的方程W-(2m-1)x+/n2=0的两实数根为xi»X2,若(xi+1)(X2+1)=3,则用的值为( ).-3 B.-1 C・-3或1 D,-1或3【分析】根据方程(2m-1) -1=0的两实数根为XI,X2,得出X1+X2与X1JV2的值,再根据X3+x22=3,即可求出〃?的值.【解答】解:•.•方程X2-(2川-1)工+后=0的两实数根为X],必.*.xi+x2=2w-1,x\x2=n^f/(Xl+1)(X2+1)=XIX2+Xl+X2+1=3,zn2+2/n-1+1=3,解得:mi=l,ni2=-3,・,方程有两实数根,,A=(2m-I)2-4机22o,即,4,・山2=1(不合题意,舍去),,・"?-3;故选:A.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键掌握刘,也是方程/+p%+q=O的两根时,xi+x2=-〃,x\x2=q-(3分)如图,A5是0O的直径,0。垂直于弦AC于点。,。0的延长线交。。于点£若AC=4点,DE=4,则8c的长是( )A.1 B.V2 C.2 D.4【分析】由垂径定理可知,点。是AC的中点,则O。是△A8C的中位线,所以OO=」8C,2IS0D=x,则8c=2x,贝i]0E=4-x,AB=2OE=S-2x,在RtZ\4BC中,由勾股定理可得4B2=AC2+BC2,即(8-2x)2=(45/2)2+(2x)2,求出x的值即可得出结论.【解答】解:是。。的直径,,NC=90°,':OD±AC,...点。是4c的中点,...0。是AABC的中位线,J.OD//BC,且OO=_1bC,2设OD=x,则BC=2x,VD£=4,:.OE=4-x,:.AB=20E=S-lx,在RtZXABC中,由勾股定理可得,AB2=AC2+BC2,:.(8-2x)2=(4>/2)2+(2x)2,解得x=l.:*BC=2x=2.故选:C.【点评】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.(3分)如图,在平面直角坐标系xOy中,矩形0ABe的顶点B的坐标为(10,4),四边形4BEF是菱形,且若直线/把矩形OABC和菱形ABEF组成的图形342【分析】分别求出矩形O4BC和菱形A8EF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.【解答】解:连接。8,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线/,如图,•.•四边形048c是矩形,:.OM=BM.的坐标为(10,4),:.M(5,2),AB=10,BC=4.•.•四边形ABEF为菱形,BE=AB=\0.过点E作EG1_4B于点G,在RtABEG中,tanZABE=—,3•EG4*'bgV设EG=4k,则BG=3k,A5£=Veg2+bg2=5^•••52=10,:・k=2,AEG=8,BG=6,:.AG=4.:.E(4,12).・・・8的坐标为(10,4),轴,(0,4).•・•点N为AE的中点,:.N(2,8).设直线/的解析式为y=ax+b,5a+b=22a+b=8解得:门=-2,lb=12.•.直线/的解析式为丫=-2x+12,故选:D.【点评】本题主要考查了矩形和菱形的性质,中点坐标的特征,直角三角形的边角关系定理,利用待定系数法确定函数的解析式是解题的关键.12.(3分)如图,在边长为3的正方形A8C。中,点£是边上的点,且BE=2AE,过点、E作DE的垂线交正方形外角NCBG的平分线于点F,交边BC于点M,连接DF交边【分析】根据正方形的性质、相似三角形的判定和性质,可以求得CN和BN的长,然后根据BC=3,即可求得MN的长.【解答】解:作FHLBG交于点H,作FKLBC于点K,,;BF平分NCBG,ZKBH=90°,二四边形B//FK是正方形,'JDELEF,NEHF=9Q°,:.ZDEA+ZFEH=90°,NEFH+NFEH=9Q°,:.ZDEA=ZEFH,;NA=NEHF=90°,:.△DAEsgHF,•ADAE••~,HEHF.,正方形ABC。的边长为3,BE=2AE,;.AE=1,BE=2,设FH=a,则B4=a,
3 1•,2+aa解得4=1;〈FM上CB,DC1CB,:•△DCNs^FKN,DCCN•瓦词:BC=3,BK=1,,CK=2,设CN=b,则NK=2-43b•—二 ,12-b解得6=3,2即CN=S,2VZA=ZEBM,NAED=NBME,:.XADES&BEM,ADAE•,BEBM31••—~>2BM解得BM=2l,3:"MN=BC-CN-BM=3-S-2=5,236故选:B.CC“G【点评】本题考查正方形的性质、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共4个小题,每小题3分,共12分).(3分)点(-2,3)关于原点的对称点的坐标为 (2,-3).【分析】平面直角坐标系中任意一点尸(x,y),关于原点的对称点是(-X,-y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:•.•点M(-2,3)关于原点对称,.,♦点M(-2,3)关于原点对称的点的坐标为(2,-3).故答案为(2,-3).【点评】本题考查关于原点对称的点的坐标特征,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.(3分)若(a-2)2+|Z>+3|=0,则ab=-6.【分析】根据非负数的性质列式求出人人的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a-2=0,6+3=0,解得a=2,b=-3.所以,ab=2X(-3)=-6.故答案为:-6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.TOC\o"1-5"\h\z(3分)若方程立3+1=旦的解使关于x的不等式(2-a)x-3>0成立,则实数。x-2 2-x的取值范围是 -1.【分析】先解分式方程,再将x代入不等式中即可求解.【解答】解:主之+1=2,x-2 2-x〜x-2- ,x-2x-2x-22xz2_=o,x-2解得:x=l,2-xW0,:.x=\是分式方程的解,将x=l代入不等式(2-a)x-3>0,得:2-。-3>0,解得:a<-1,实数a的取值范围是-1,故答案为:a<-1.【点评】本题考查分式方程的解,不等式的解集,解题的关键是正确求出分式方程的解,要注意分母不能为0.(3分)如图,在 中,ZC=90°,AC=6,8c=2百,半径为1的。。在Rt△ABC内平移(。。可以与该三角形的边相切),则点A到。。上的点的距离的最大值为25/7+1_.【分析】连接OE、OF,根据正切的定义求出NA8C,根据切线长定理得到NO8F=30°,根据含30°角的直角三角形的性质、勾股定理计算,得到答案.【解答】解:当。。与BC、BA都相切时,连接AO并延长交于点D,则AO为点A到。。上的点的距离的最大值,设。。与BC、BA的切点分别为E、F,连接OE、OF,则OEYBC,OFLAB,:AC=6,BC=2百,.".tanZABC=_=V3> VaC2+BC2=4V3>BC/.ZABC=60°,・・・NOBF=30°,二BF=——Of——=百,
tanZOBF:.AF=AB-BF=3>J3,OA=(of2+AF2=2a/7,・・・AO=2W+1,故答案为:2a/V+L【点评】本题考查的是切线的性质、直角三角形的性质、切线长定理,根据题意得出AO为点A到。0上的点的距离的最大值是解题的关键.三、本大题共3个小题,每小题6分,共18分.(6分)计算:(百)0+2I+V2cos450-|-A|.2【分析】根据实数的运算法则,绝对值,零指数累,负整数指数幕,特殊角的三角函数值直接计算即可.【解答】解:原式=1+工+近乂返_-工2 2 2=i+A+i-A2 2=1+1=2.【点评】本题考查实数的运算,绝对值,零指数幕,负整数指数塞,特殊角的三角函数值,解题的关键是熟练掌握知识点,正确计算.(6分)如图,E,尸分别是的边A8,CD上的点,已知AE=CE求证:DE=BF.D FCAE B【分析】根据平行四边形的性质,可以得到NA=NC,AD=CB,再根据AE=CF,利用SAS可以证明和ACB尸全等,然后即可证明结论成立.【解答】证明:•.•四边形ABC。是平行四边形,/.ZA=ZC,AD=CB,在△4OE和△CB尸中,'AD=CB-Za=Zc-AE=CF:.△ADE妾ACBF(SAS),:.DE=BF.【点评】本题考查平行四边形的性质、全等三角形的判定与性质,解答本题的关键是证明△AQE和△C8F全等.TOC\o"1-5"\h\z2 2(6分)化简:(以二3m=80,a=m=80,a=20;m m【分析】先把括号部分通分并计算加法,再根据分式的乘除法法则化简即可.2 2【解答】解:原式=m-3m+l+m+m-1m m_m^-2m+l m- -m in?-1(m-1).mm (m+1)(m-l)_m-lm+1【点评】本题考查了分式的混合运算,掌握分式的通分以及相关乘法公式是解答本题的关键.四、本大题共2个小题,每小题7分,共14分.(7分)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了机名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间1(单位:小时)频数TOC\o"1-5"\h\z0.5&V1 12W1.5 a1.54V2 282&V2.5 162.54W3 4(2)若该校学生有640人,试估计劳动时间在2W/W3范围的学生有多少人?(3)劳动时间在2.5W.W3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率./D A:0.5<t<1昌、C\B:l<t<1.5C:1.5<t<2\A/\ D:2<t<2.5\15ybE:2.5<t<3【分析】(1)用4组人数除以它所占的百分比得到,”的值,然后,”分别减去A、C、D、E组的人数得到a的值:(2)用640乘以£)、E组的人数所占的百分比的和即可;(3)画树状图展示所有12种等可能的结果,找出一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)m=12-i-15%=80,a=80-12-28-16-4=20:故答案为:80;20;(2)640x1^11=160(人),80所以估计劳动时间在范围的学生有160人;(3)画树状图为:开始男女女男女女男男女男居女共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率=且=2.123【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出〃,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.(7分)某经销商计划购进A,8两种农产品.己知购进4种农产品2件,B种农产品3件,共需690元;购进4种农产品1件,B种农产品4件,共需720元.
(DA,8两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进4,B两种农产品共40件,且4种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,8种每件200元的价格全部售出,那么购进A,8两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件8种农产品的价格是y元,根据“购进A种农产品2件,8种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进机件A种农产品,则购进(40-/n)件8种农产品,利用总价=单价X数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于机的一元一次不等式组,解之即可得出,〃的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润X销售数量,即可得出卬关于相的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设每件4种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:2x+3y=690x+4y=720解得:x=120依题意得:2x+3y=690x+4y=720解得:x=120y=150答:每件4种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40-m)件B种农产品,依题意得.•[衣3(40-m) ,\120m+150(40-m)<5400解得:20W/n<30.设两种农产品全部售出后获得的总利润为w元,则卬=(160-120)m+(200-150)(40-m)=-10m+2000.V-10<0,二卬随m的增大而减小,当m=20时,w取得最大值,此时40-m=40-20=20.答:当购进20件A种农产品,20件8种农产品时获利最多.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据各数量之间的关系,找出卬关于根的函数关系式.五、本大题共2个小题,每小题8分,共16分.
(8分)如图,直线y=-m+b与反比例函数y=12的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△4BC的面积为3,求点C的坐标.【分析】(1)先求出点A坐标,代入解析式可求解;(2)先求出点O坐标,由面积的和差关系可求CC=2,即可求解.【解答】解:(1)•••点A在反比例函数上,且4的纵坐标为6,.♦.点4(2,6),直线y=-^jc+b经过点A,2.*.6=-3x2+b,2:.b=9;(2)如图,设直线AB与x轴的交点为
设点C(a,0),,/直线AB与x轴的交点为...点D(6,0),,X=2(x2=4••«,/,,丫1=6,丫2=3:.点、B(4,3),'.,SaACB=SaACD-SaBCD,.\3=AxCDX(6-3),2:.CD=2,...点C(4,0)或(8,0).【点评】本题是反比例函数综合题,考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活运用所学知识解决问题,学会分割法求三角形的面积.(8分)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛。位于南偏东30°方向,且A,。相距10〃加/e.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8近nmile.求8,。间的距离(计算过程中的数据不取近似值).D【分析】由勾股定理求出AB过。作DHVAB于H,分别在RIYADH中和RtABDH中,解直角三角形即可求出BD.【解答】解:由题意得,NC48=NA8C=45°,BC=8近nmile.AZC=90°,■•AB=VaC2+BC2=V2^c=V2X8料=16(nnule),
过。作DH±AB于H,则NA4O=NB/〃)=90°,在RtZXAOH中,ZADH=3Qa,AD=\0nmile,cosNAO"=也,AD:.AH=lAD=5nmile,DH=10«cos300=10X2:.BH=AB-AH=]\nmile,在RtZXBO”中,BD=VdH2+BH2=7(5a/3)2+ll2=14答:B,。间的距离是14〃就是【点评】本题主要考查了解直角三角形的应用,正确作出辅助线构造出直角三角形是解决问题的关键.六、本大题共2个小题,每小题12分,共24分.(12分)如图,点C在以A8为直径的。。上,CD平分NACB交。0于点D,交AB于点E,过点D作。0的切线交CO的延长线于点F.(1)求证:FD//AB-,(2)若AC=2,^,BC=述,求FC的长.【分析】(1)连接。。,证明力尸_L。。,AB1OD,可得结论;(2)过点C作于点儿利用勾股定理求出A8,利用面积法求出C”,证明△CHOs^oDF,推出型=©旦,由此求出OF即可.
ODDF【解答】(1)证明:连接0D尸是。。的切线,ODLDF,,.•CD平分NACB,•••AD=DB-:.OD±AB,:.AB//DF;(2)解:过点C作于点•:AB是直径,ZACB=90",VBC=V5>AC=2遥,•'-ab=Vac2+bc2=V(2V5)2+(V5)2=5'":Smbc=^AC'BC=^AB-CH,2 2•CA7=2V5xV5-2," 5 ,b//=Vbc2-ch2=l:.OH=OB-BH=2-1=旦,2 2':DF//AB,:.ZCOH=ZF,;NCHO=NODF=90°,:./\CHO^/\ODF,H-FO-D-H-Dc-o3-2-df
-
2-5-2158
=FD【点评】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.(12分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年通化办理客运从业资格证考试题和答案
- 2024年清远道路客运驾驶员从业资格证考试题库
- 2024年影视作品授权播放与分销合同
- 2024年保山客运从业资格证摸拟题
- 2023届新高考化学选考一轮总复习学案-第12讲 氮及其重要化合物
- 12命题与逻辑用语(精练)
- 2024关于物业管理和业主权益的综合性服务合同
- 《第8课 美国联邦政府的建立》(同步训练)高中历史必修1-人教版-2024-2025学年
- 144科学测量温度(教学设计)-七年级科学上册(浙教版)
- 思想道德与法治-随笔
- 我的生涯发展报告
- 普通高中通用技术课程标准解读学习教案
- 公共场所中文标识英文译写规范 第4部分:体育
- 2024年中国华能集团有限公司招聘笔试参考题库附带答案详解
- 创业计划书小红书
- 角膜炎的原因和治疗药物选择
- 电力电缆及附件基础知识
- 品牌授权书中英文版本
- 铁的氢氧化物(课件)
- 风光水多能互补电站建设
- 冷库安全危险因素和管控与应急措施培训课件
评论
0/150
提交评论