2022年辽宁省阜新市中考数学真题_第1页
2022年辽宁省阜新市中考数学真题_第2页
2022年辽宁省阜新市中考数学真题_第3页
2022年辽宁省阜新市中考数学真题_第4页
2022年辽宁省阜新市中考数学真题_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年辽宁省阜新市中考数学试卷一、选择题(本大题共10小题,共30分。在每小题列出的选项中,选出符合题目的一项)(3分)在有理数一1,-2,0,2中,最小的是()A.-1 B.-2 C.0 D.2(3分)在如图所示的几何体中,俯视图和左视图相同的是()(3分)为庆祝神舟十四号发射成功,学校开展航天知识竞赛活动.经过几轮筛选,本班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分之)如表所示:甲乙丙丁平均数96989598方差20.40.41.6如果要选一名成绩好且状态稳定的同学参赛,那么应该选择()A.甲 B.乙 C.丙 D.T(3分)已知反比例函数y=1kW0)的图象经过点(一2,4),那么该反比例X函数图象也一定经过点()A.(4,2) B.(1,8) C.(-1,8)D.(-1,-8)(3分)不等式组的解集,在数轴上表示正确的是()(0.5%—1<0.5A.-303 B.-303C.-303 D.-303(3分)如图,A,B,C是。0上的三点,若NC=35°,则NAB0的度数是

35°55°60°70°35°55°60°70°(3分)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()(3分)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的L2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是( )AA30__30_=20

x1.2xB.---=1.2xx-20------=201.2xx---=1.2x-20x(3分)下列关于二次函数y=3(x+l)(2—x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上A.点(0,2)在函数图象上B.开口方向向上C.对称轴是直线x=lD.与直线y=3x有两个交点(3分)如图,平面直角坐标系中,在直线y=x+l和x轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在x轴上,另一条直角边与x轴垂直,则第100个等腰直角三角形的面积是()

A.298BA.298B.2"C.2197D.2198二、填空题(本大题共6小题,共18分)1L(3分)计算:2-2(3分)一副三角板如图摆放,直线AB〃CD,则a的度数是一(3分)如图,在矩形ABCD中,E是AD边上一点,且AE=2DE,BD与CE相交于点F,若4DEF的面积是3,则4BCF的面积是.(3分)在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是.(3分)如图,在AABC中,ZB=90°,AB=BC=4,将AABC绕点A逆时针旋转60°,得到AADE,则点D到BC的距离是.(3分)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速

三、解答题(本大题共8小题,共72分。解答应写出文字说明,证明过程或演算步骤)17・(6分)先化简,再求值:3筌+(1—£),其中a=4.(6分)当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图1,将一次函数y=x+2的图象向下平移1个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=-2x+4的图象向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上,对于一次函数y=kx+b(kWO)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(kV0时)平移了n(n>0)个单位长度,且m,n,k满图10备用图图10备用图(8分)如图,在RtZXABC中,ZACB=90°,0是BC边上一点,以0为圆心,0B为半径的圆与AB相交于点D,连接CD,且CD=AC.(1)求证:CD是。。的切线;(2)若NA=60。,AC=2g,求而的长.(8分)某校为提高学生的综合素质,准备开设''泥塑"“绘画"‘‘书法"''街舞”四门校本课程,为了解学生对这四门课程的选择情况(要求每名学生只能选择其中一门课程),学校从七年级学生中随机抽取部分学生进行问卷调查,根据调查结果绘制成如图所示的两幅不完整的统计图,请你依据图中信息解答下列问题:(1)参加此次问卷调查的学生人数是人,在扇形统计图中,选择''泥塑”的学生所对应的扇形圆心角的度数是;(2)通过计算将条形统计图补充完整;(3)若该校七年级共有600名学生,请估计七年级学生中选择“书法”课程的约有多少人?(10分)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为a,cosa=g.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).(1)求3D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:替1.7)□□□□□□□□□□□□□□(10分)某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?(12分)已知,四边形ABCD是正方形,ZWEF绕点D旋转(DEVAB),ZEDF=90°,DE=DF,连接AE,CF.(1)如图1,求证:Z\ADE0Z\CDF;(2)直线AE与CF相交于点G.①如图2,BMJLAG于点M,BN_LCF于点N,求证:四边形BMGN是正方形;②如图3,连接BG,若AB=4,DE=2,直接写出在4DEF旋转的过程中,线段BG长度的最小值.(图I)(图(图I)(图2)(图3)(12分)如图,已知二次函数y=-x2+bx+c的图象交x轴于点A(—1,0),B(5,0),交y轴于点C.(1)求这个二次函数的表达式;(2)如图1,点M从点B出发,以每秒a个单位长度的速度沿线段BC向点C运动,点N从点0出发,以每秒1个单位长度的速度沿线段OB向点B运动,点M,N同时出发.设运动时间为t秒(0VtV5).当t为何值时,aBMN的面积最大?最大面积是多少?(3)已知P是抛物线上一点,在直线BC上是否存在点Q,使以A,C,P,Q为顶点的四边形是平行四边形?若存在,直接写出点Q坐标;若不存在,请说明理由.图1图1备用图2022年辽宁省阜新市中考数学试卷参考答案一、选择题(本大题共10小题,共30分。在每小题列出的选项中,选出符合题目的一项)(3分)在有理数一1,-2,0,2中,最小的是()A.-1 B.-2 C.0 D.2答案:B解析:有理数一1,-2,0,2中,最小的是一2,故选:B.(3分)在如图所示的几何体中,俯视图和左视图相同的是()答案:C解析:A.俯视图是带圆心的圆,左视图是等腰三角形,故本选项不合题意;B.俯视图是圆,左视图是矩形,故本选项不合题意;C.俯视图与左视图都是正方形,故本选项符合题意;D.俯视图是三角形,左视图是矩形,故本选项不合题意.故选:C.(3分)为庆祝神舟十四号发射成功,学校开展航天知识竞赛活动.经过几轮筛选,本班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分之)如表所示:甲乙丙T平均数96989598方差20.40.41.6如果要选一名成绩好且状态稳定的同学参赛,那么应该选择()A.甲 B.乙 C.丙 D.T答案:B解析:•.•乙、丁同学的平均数比甲、丙同学的平均数大,,应从乙和丁同学中选,•••乙同学的方差比丁同学的小,,乙同学的成绩较好且状态稳定,应选的是乙同学;故选:B.(3分)已知反比例函数丫=々1;工0)的图象经过点(一2,4),那么该反比例X函数图象也一定经过点()A.(4,2) B.(1,8) C.(-1,8)D.(-1,-8)答案:C解析:’•,反比例函数y="(kWO)的图象经过点(一2,4),X...k=-2X4=-8,A、,.•4X2=8W—8,.•.此点不在反比例函数的图象上,故本选项错误;B、,.•1X8=8W—8,,此点不在反比例函数的图象上,故本选项错误;C、一1X8=-8,.,.此点在反比例函数的图象上,故本选项正确;D、(一l)X(—8)=8W—8,.,.此点不在反比例函数的图象上,故本选项错误.故选:C.(3分)不等式组{。葭二:肾§的解集,在数轴上表示正确的是()答案:A解析:由一X-1W2,得:x2—3,由0.5x—l<0.5,得:x<3,则不等式组的解集为-3WxV3,故选:A.(3分)如图,A,B,C是。0上的三点,若NC=35°,则NABO的度数是)A.35° B.55° C.60° D.70°答案:B解析:如图,连接OA,VZC=35°,/.ZA0B=2ZC=70°,V0A=0B,.•.ZAB0=ZBA0=i(180°-NA0B)=55°.故选:B.(3分)如图,是由12个全等的等边三角形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()答案:D解析:先设每个小等边三角的面积为X,则阴影部分的面积是6x,得出整个图形的面积是12x,则这个点取在阴影部分的概率是言=:.

故选:D.(3分)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的L2倍,结果提前20天完成了这项工作.设原计划每天接种x万人,根据题意,所列方程正确的是( )A.307—A.307—=201.2XB.---=1.2XX-20r30 30 n30 30 .nC. =ZO D. =l.Z1.2XX x-20X答案:A解析:•.•实际每天接种人数是原计划的1.2倍,且原计划每天接种x万人,,实际每天接种L2x万人,又•.•结果提前20天完成了这项工作,故选:A.(3分)下列关于二次函数y=3(x+l)(2—x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上 B.开口方向向上C.对称轴是直线x=l D.与直线y=3x有两个交点答案:D解析:A、把x=0代入y=3(x+l)(2—x),得y=6W2,...A错误;B、化简二次函数:y=—3x2+3x+6,Va=-3<0,二二次函数的图象开口方向向下,...B错误;C、二•二次函数对称轴是直线x=-2=;2a2•'-C错误;D、V3(x+1)(2-x)=3x,/.-3x2+3x+6=3x,.,.-3x2+6=0,Vb2-4ac=108>0,二二次函数y=3(x+l)(2—x)的图象与直线y=3x有两个交点,**.D正确;故选:D.(3分)如图,平面直角坐标系中,在直线y=x+l和x轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在x轴上,另一条直角边与x轴垂直,则第100个等腰直角三角形的面积是()/O xA.298 B.2" C.2削 D.答案:C解析:当x=0时,y=x+l=l,根据题意,第1个等腰直角三角形的直角边长为1,第1个等腰直角三角形的面积为^义IX1=5当x=l时,y=x+l=2,.•.第2个等腰直角三角形的直角边长为2,第2个等腰直角三角形的面积为^X2X2=2,当x=3时,y=x+l=4,.•.第3个等腰直角三角形的直角边长为4,第3个等腰直角三角形的面积为^X4X4=8,依此规律,第100个等腰直角三角形的面积为gx4“0T=2i97,故选:C.二、填空题(本大题共6小题,共18分)(3分)计算:2-2.答案:一:4解析:原式=;—2=—4 4故答案为:—4(3分)一副三角板如图摆放,直线AB〃CD,则a的度数是C D答案:15。ZEBD=90°,ZBDE=45°,ZEDC=30°,TAB//CD,/.ZABD+ZBDC=180°,.*.Za=180°-ZEBD-ZBDE-ZEDC=180o-900-45o-30,)=15°,故答案为:15。.(3分)如图,在矩形ABCD中,E是AD边上一点,且AE=2DE,BD与CE相交于点F,若4DEF的面积是3,则4BCF的面积是.'I~WB 答案:27解析:•.•四边形ABCD是矩形,,AD=BC,AD/7BC,,NEDF=NCBF,VZEFD=ZCFB,.,.△DEF^ABCF,VAE=2DE,AD=BC,ADE:BC=1:3,,Sadef:SaBCF=DE2:BC2,即3:SaBCF—1:9,,Sabcf=27*故答案为:27.(3分)在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是.答案:|解析:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,•••抽取的两名同学恰好是一名男生和一名女生的概率为"=|.故答案为:(3分)如图,在AABC中,ZB=90°,AB=BC=4,将AABC绕点A逆时针旋转60°,得到aADE,则点D到BC的距离是.B° 答案:2解析:如图,连接BD,过点D作DHJ_BC于H,:区VWAABC绕点A逆时针旋转60°,;.AB=AD=4,ZBAD=60°,AAABD是等边三角形,,BD=AB=4,NABD=60°,AZDBC=30°,VDH1BC,1・••DH=/D=2,点D到BC的距离是2,故答案为:2.(3分)快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s(km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速答案;35解析:•.•快递员始终匀速行驶,•••快递员的行驶速度是一,、=35(km/h).0.55-2(0.35-0.2)故答案为:35.三、解答题(本大题共8小题,共72分。解答应写出文字说明,证明过程或演算步骤)(6分)先化简,再求值:与竽+(1—右),其中a=4.a2-2a a-2解答:原式=笆+(=—吃)a(a-2) a—2a—2 (a-3)2,a—3a(a-2)a—2(a-3)2.a-2a(a-2) a-3当a=4时,原式=1=L4 4(6分)当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图1,将一次函数y=x+2的图象向下平移1个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=-2x+4的图象向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上,对于一次函数y=kx+b(kW0)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(kV0时)平移了n(n>0)个单位长度,且m,n,k满足等式.图1图1备用图解答:(1)•.•将一次函数y=x+2的图象向下平移1个单位长度得到y=x+2—1=(x—1)+2»,相当于将它向右平移了1个单位长度,故答案为:1;(2)将一次函数y=-2x+4的图象向下平移1个单位长度得到y=-2x+4-l=-2(x+l)+4,.•.相当于将它向左平移了1个单位长度;故答案为:左;1;(3)综上,对于一次函数y=kx+b(kWO)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向右(填“左”或“右”)(k>0时)或将它向左(填“左”或“右”)(kV0时)平移了n(n>0)个单位长度,且m,n,k满足等式m=n|k|.故答案为:右;左。(8分)如图,在RtZXABC中,ZACB=90°,0是BC边上一点,以0为圆心,0B为半径的圆与AB相交于点D,连接CD,且CD=AC.(1)求证:CD是。。的切线;(2)若NA=60。,AC=2V3,求SB的长.VAC=CD,.\ZA=ZADC.VOB=OD,,NB=NBDO.VZACB=90°,.,.ZA+ZB=90°..,.ZADC+ZBD0=90°..•.Z0DC=180°-(ZADC+ZBD0)=90°.又「OD是。0的半径,,CD是。。的切线.VAC=CD=2V3,ZA=60°,/.△ACD是等边三角形./.ZACD=60°.,NDC0=NACB-NACD=30°.在RtZkOCD中,OD=CD•tanZDC0=2V3•tan300=2.VZB=90°-ZA=30°,OB=OD,.*.Z0DB=ZB=30°.,NB0D=180°—(NB+NBD0)=120°....回的长="如星=±a180 3(8分)某校为提高学生的综合素质,准备开设“泥塑”“绘画”“书法”“街舞”四门校本课程,为了解学生对这四门课程的选择情况(要求每名学生只能选择其中一门课程),学校从七年级学生中随机抽取部分学生进行问卷调查,根据调查结果绘制成如图所示的两幅不完整的统计图,请你依据图中信息解答下列问题:(1)参加此次问卷调查的学生人数是人,在扇形统计图中,选择“泥塑”的学生所对应的扇形圆心角的度数是;(2)通过计算将条形统计图补充完整;(3)若该校七年级共有600名学生,请估计七年级学生中选择“书法”课程的约有多少人?

解答:(1)参加此次问卷调查的学生人数是:7・14%=50;选择“泥塑”的学生所对应的扇形圆心角的度数是:360°X^=64.8°.50故答案为:50,64.8°;(2)“绘画”的人数为:50-9-18-7=16(人),答:七年级学生中选择“书法”课程的约有216人.(10分)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为a,cosa二:.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:73^1.7)解答:(1)过点D作DE_LBC,交BC的延长线于点E,,在RtZM)CE中,cosa=-,CD=15m,5ACE=CD•cosa=15X-=12(m).5.\DE=JCD2-CE2=J152-122=9(m).答:C,D两点的高度差为9m.(2)过点D作DF_LAB于F,由题意可得BF=DE,DF=BE,设AF=xm,在RtZXADF中,tan/ADF=tan30°DFDF3解得DF=V3x,在RtZXABC中,AB=AF+FB=AF+DE=(x+9)m,BC=BE-CE=DF-CE=(V3x-12)m,tan600=竺=毒==6,BCV3x-12解得x=6V3+j,.,.AB=6V3+1+9^24(m).答:居民楼的高度AB约为24nl.(10分)某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?解答:(1)设生产A产品x件,B产品y件,俎用音徂/ 100x+75y=8250根据立心、'得((120-100)x+(100-75)y=2350解这个方程组,得[二次,所以,生产A产品30件,B产品70件.(2)设B产品生产m件,则A产品生产(180—m)件,根据题意,得(100—75)m+(120—100)(180-m)24300,解这个不等式,得m2140.所以,B产品至少生产140件.(12分)已知,四边形ABCD是正方形,Z\DEF绕点D旋转(DEVAB),ZEDF=90°,DE=DF,连接AE,CF.(1)如图1,求证:AADE^ACDF;(2)直线AE与CF相交于点G.①如图2,BM_LAG于点M,BN_LCF于点N,求证:四边形BMGN是正方形;②如图3,连接BG,若AB=4,DE=2,直接写出在4DEF旋转的过程中,线段BG长度的最小值.解答:(1)证明:•.•四边形ABCD是正方形,,AD=DC,NADC=90°.VDE=DF,ZEDF=90°..\ZADC=ZEDF,.,.ZADE=ZCDF,[DA=DC在AADE和ACDF中,ZADE=ZCDF,DE=DF.,.△ADE^ACDF(SAS);(2)①证明:如图2中,设AG与CD相交于点P.(图2)VZADP=90°,.,.ZDAP+ZDPA=90°.VAADE^ACDF,,NDAE=NDCF.VZDPA=ZGPC,ZDAE+ZDPA=ZGPC+ZGCP=90AZPGN=90°,VBM1AG,BN±GN,四边形BMGN是矩形,.,.ZMBN=90°.•.•四边形ABCD是正方形,,AB=BC,NABC=NMBN=90°.,NABM=NCBN.又,.,/AMB=NBNC=90°,.\MB=NB.矩形BMGN是正方形;②解:作DHLAG交AG于点H,作BMLAG于点M,(图3)此时aAMB名Z^AHD.;.BM=AH.VAH2=AD2-DH2,AD=4,;.DH最大时,AH最小,DH曷+值=DE=2.JR人诅,BM最小值=AH最小值=28.由①可知,4BCM是等腰直角三角形,•••B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论