湖北省华师大附中2022年高一数学第一学期期末达标检测试题含解析_第1页
湖北省华师大附中2022年高一数学第一学期期末达标检测试题含解析_第2页
湖北省华师大附中2022年高一数学第一学期期末达标检测试题含解析_第3页
湖北省华师大附中2022年高一数学第一学期期末达标检测试题含解析_第4页
湖北省华师大附中2022年高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13/142022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.“当时,幂函数为减函数”是“或2”的()条件A.既不充分也不必要 B.必要不充分C.充分不必要 D.充要2.在正六棱柱任意两个顶点的连线中与棱AB平行的条数为()A.2 B.3C.4 D.53.垂直于直线且与圆相切的直线的方程是AB.C.D.4.△ABC的内角、、的对边分别为、、,若,,,则()A. B.C. D.5.设和两个集合,定义集合,且,如果,,那么A. B.C. D.6.过点,直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或47.设为定义在上的偶函数,且在上为增函数,则的大小顺序是()A. B.C. D.8.已知幂函数在上单调递减,则()A. B.5C. D.19.函数的部分图象如图示,则将的图象向右平移个单位后,得到的图象解析式为()A. B.C. D.10.设函数则A.1 B.4C.5 D.9二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知直线,直线若,则______________12.已知函数,.(1)若函数的值域为R,求实数m的取值范围;(2)若函数是函数的反函数,当时,函数的最小值为,求实数m的值;(3)用表示m,n中的最大值,设函数,有2个零点,求实数m的范围.13.已知点P(-,1),点Q在y轴上,直线PQ的倾斜角为120°,则点Q的坐标为_____14.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________15.的化简结果为____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象对称轴方程;(2)讨论函数f(x)在上的单调性.17.从某校随机抽取100名学生,调查他们一学期内参加社团活动的次数,整理得到的频数分布表和频率分布直方图如下:组号分组频数1628317422525612768292合计100从该校随机选取一名学生,试估计这名学生该学期参加社团活动次数少于12次的概率;求频率分布直方图中的a、b的值;假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生本学期参加社团活动的平均次数18.设是函数定义域内的一个子集,若存在,使得成立,则称是的一个“弱不动点”,也称在区间上存在“弱不动点”.设函数,(1)若,求函数的“弱不动点”;(2)若函数在上不存在“弱不动点”,求实数的取值范围19.若集合,,.(1)求;(2)若,求实数的取值范围.20.如图,某园林单位准备绿化一块直径为BC的半圆形空地,外的地方种草,的内接正方形PQRS为一水池,其余的地方种花.若,,设的面积为,正方形PQRS的面积为.(1)用a,表示和;(2)当a为定值,变化时,求的最小值,及此时的值.21.计算求解(1)(2)已知,,求的值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据幂函数的定义和性质,结合充分性、必要性的定义进行求解即可.【详解】当时,幂函数为减函数,所以有,所以幂函数为减函数”是“或2”的充分不必要条件,故选:C2、D【解析】作出几何体的直观图观察即可.【详解】解:连接CF,C1F1,与棱AB平行的有,共有5条,故选:D.3、B【解析】设所求直线方程为3x+y+c=0,则d=,解得d=±10.所以所求直线方程为3x+y+10=0或3x+y-10=0.4、C【解析】由已知利用余弦定理可求的值,利用等腰三角形的性质可求的值.【详解】解:∵,,,∴由余弦定理可得,求得:c=1.∴∴.故选:C.【点睛】本题主要考查了余弦定理在解三角形中应用,属于基础题.5、D【解析】根据的定义,可求出,,然后即可求出【详解】解:,;∴.故选D.【点睛】考查描述法的定义,指数函数的单调性,正弦函数的值域,属于基础题6、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.7、A【解析】根据单调性结合偶函数性质,进行比较大小即可得解.【详解】因为为偶函数,所以又在上为增函数,所以,所以故选:A8、C【解析】根据幂函数的定义,求得或,再结合幂函数的性质,即可求解.【详解】解:依题意,,故或;而在上单调递减,在上单调递增,故,故选:C.9、D【解析】由图像知A="1,",,得,则图像向右移个单位后得到的图像解析式为,故选D10、C【解析】根据题意,由函数的解析式求出与的值,相加即可得答案【详解】根据题意,函数,则,又由,则,则;故选C【点睛】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.12、(1)(2)(3)【解析】(1)函数的值域为R,可得,求解即可;(2)设分类论可得m的值;(3)对m分类讨论可得结论.【小问1详解】值域为R,∴【小问2详解】,.设,,①若即时,,②若,即时,,舍去③若即时,,无解,舍去综上所示:【小问3详解】①显然,当时,在无零点,舍去②当时,,舍去③时,解分别为,,只需控制,不要均大于等于1即可Ⅰ:,,,舍去Ⅱ:,无解,综上:13、(0,-2)【解析】设点坐标为,利用斜率与倾斜角关系可知,解得即可.【详解】因为在轴上,所以可设点坐标为,又因为,则,解得,因此,故答案为.【点睛】本题主要考查了直线的斜率计算公式与倾斜角的正切之间的关系,属于基础题.14、①.##0.96②.【解析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.15、18【解析】由指数幂的运算与对数运算法则,即可求出结果.【详解】因为.故答案为18【点睛】本题主要考查指数幂运算以及对数的运算,熟记运算法则即可,属于基础题型.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)单调增区间为;单调减区间为.【解析】(1)先化简得函数f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函数y=f(x)图象的对称轴方程.(2)先求函数的单调递增区间为(k∈Z),再给k取值,得到函数f(x)在上的单调性.【详解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函数f(x)的对称轴方程为x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函数f(x)的单调递增区间为(k∈Z).注意到x∈,令k=0,得函数f(x)在上的单调递增区间为;其单调递减区间为.【点睛】(1)本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握说和分析推理能力.(2)一般利用复合函数的单调性原理求复合函数的单调区间,首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.17、(1)0.9;(2)b=0.125;(3)7.68次.【解析】由频数分布表得这名学生该学期参加社团活动次数少于12次的频数为90,由此能求出从该校随机选取一名学生,估计这名学生该学期参加社团活动次数少于12次的概率由频数分布表及频率分布直方图能求出频率分布直方图a,b的值利用频率分布直方图和频数分布表能估计样本中的100名学生本学期参加社团活动的平均次数【详解】解:由频数分布表得这名学生该学期参加社团活动次数少于12次的频数为:,从该校随机选取一名学生,估计这名学生该学期参加社团活动次数少于12次的概率由频数分布表及频率分布直方图得:频率分布直方图中,估计样本中的100名学生本学期参加社团活动的平均次数:次【点睛】本题考查概率、频率、平均数的求法,考查频数分布表、频率分布直方图等知识,属于基础题18、(1)0(2)【解析】(1)解方程可得;(2)由方程在上无解,转化为求函数的取值范围,利用换元法求解取值范围,同时注意对数的真数大于0对参数范围有限制,从而可得结论【小问1详解】当时,,由题意得,即,即,得,即,所以函数的“弱不动点”为0【小问2详解】由已知在上无解,即在上无解,令,得在上无解,即在上无解记,则在上单调递减,故,所以,或又在上恒成立,故在上恒成立,即在上恒成立,记,则在上单调递减,故,所以,综上,实数的取值范围是19、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.20、(1);(2)当时,的值最小,最小值为【解析】(1)利用已知条件,根据锐角三角形中正余弦的利用,即可表示出和;(2)根据题意,将表示为的函数,利用倍角公式对函数进行转化,利用换元法,借助对勾函数的单调性,从而求得最小值.【详解】(1)在中,,所以;设正方形的边长为x,则,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论