![四川乐山市中区2022-2023学年高一上数学期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view/8dfda0c0b8978b00c2cab027fd4604b7/8dfda0c0b8978b00c2cab027fd4604b71.gif)
![四川乐山市中区2022-2023学年高一上数学期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view/8dfda0c0b8978b00c2cab027fd4604b7/8dfda0c0b8978b00c2cab027fd4604b72.gif)
![四川乐山市中区2022-2023学年高一上数学期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view/8dfda0c0b8978b00c2cab027fd4604b7/8dfda0c0b8978b00c2cab027fd4604b73.gif)
![四川乐山市中区2022-2023学年高一上数学期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view/8dfda0c0b8978b00c2cab027fd4604b7/8dfda0c0b8978b00c2cab027fd4604b74.gif)
![四川乐山市中区2022-2023学年高一上数学期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view/8dfda0c0b8978b00c2cab027fd4604b7/8dfda0c0b8978b00c2cab027fd4604b75.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
17/172022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若函数的图象与轴有交点,且值域,则的取值范围是()A. B.C. D.2.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°3.已知,则()A. B.C. D.4.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.5.下列四条直线,倾斜角最大的是A. B.C. D.6.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p37.如图,正方体中,直线与所成角大小为A. B.C. D.8.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.9.若两平行直线与之间的距离是,则A.0 B.1C.-2 D.-110.函数的定义域为()A.B.且C.且D.11.函数的单调递增区间是A. B.C. D.12.函数的最大值为A.2 B.C. D.4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若,则的最大值为________14.函数的部分图象如图所示.若,且,则_____________15.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________16.已知,点在直线上,且,则点的坐标为________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,若,且,.(1)求与的值;(2)当时,函数的图象与的图象仅有一个交点,求正实数的取值范围.18.已知函数且.(1)试判断函数的奇偶性;(2)当时,求函数的值域;(3)若对任意,恒成立,求实数的取值范围19.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.20.已知函数是定义在上的偶函数,且当时,,函数在轴左侧的图象如图所示(1)求函数的解析式;(2)若关于的方程有个不相等的实数根,求实数的取值范围21.已知为锐角,,(1)求和的值;(2)求和的值22.2021年8月,国务院教育督导委员会办公室印发《关于组织责任督学进行“五项管理”督导的通知》,通知指出,加强中小学生作业、睡眠、手机、读物、体质管理(简称“五项管理”),是深入推进学生健康成长的重要举措.宿州市要对全市中小学生“体能达标”情况进行摸底,采用普查与抽样相结合的方式进行.现从某样本校中随机抽取20名学生参加体能测试,将这20名学生随机分为甲、乙两组,其中甲、乙两组学生人数之比为3:2,测试后,两组各自的成绩统计如下:甲组学生的平均成绩为75分,方差为16;乙组学生的平均成绩为80分,方差为25(1)估计该样本校学生体能测试的平均成绩;(2)求这20名学生测试成绩的标准差.(结果保留整数)
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】由函数有零点,可求得,由函数的值域可求得,综合二者即可得到的取值范围.【详解】定义在上的函数,则,由函数有零点,所以,解得;由函数的值域,所以,解得;综上,的取值范围是故选:D2、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C3、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.4、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C5、C【解析】直线方程y=x+1的斜率为1,倾斜角为45∘,直线方程y=2x+1的斜率为2,倾斜角为α(60∘<α<90∘),直线方程y=−x+1的斜率为−1,倾斜角为135∘,直线方程x=1的斜率不存在,倾斜角为90∘.所以C中直线的倾斜角最大.本题选择C选项.点睛:直线的倾斜角与斜率的关系斜率k是一个实数,当倾斜角α≠90°时,k=tanα.直线都有斜倾角,但并不是每条直线都存在斜率,倾斜角为90°的直线无斜率.6、A【解析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.7、C【解析】连接通过线线平行将直线与所成角转化为与所成角,然后构造等边三角形求出结果【详解】连接如图就是与所成角或其补角,在正方体中,,故直线与所成角为.故选C.【点睛】本题考查了异面直线所成角的大小的求法,属于基础题,解题时要注意空间思维能力的培养.8、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.9、C【解析】∵l1∥l2,∴n=-4,l2方程可化为为x+2y-3=0.又由d=,解得m=2或-8(舍去),∴m+n=-2.点睛:两平行线间距离公式是对两平行线方程分别为,,则距离为,要注意两直线方程中的系数要分别相等,否则不好应用此公式求距离10、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C11、D【解析】,选D.12、B【解析】根据两角和的正弦公式得到函数的解析式,结合函数的性质得到结果.【详解】函数根据两角和的正弦公式得到,因为x根据正弦函数的性质得到最大值为.故答案为B.【点睛】这个题目考查了三角函数的两角和的正弦公式的应用,以及函数的图像的性质的应用,题型较为基础.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】化简,根据题意结合基本不等式,取得,即可求解.【详解】由题意,实数,且,又由,当且仅当时,即时,等号成立,所以,即的最大值为.故答案为:.14、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.15、【解析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.16、,【解析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【点睛】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),.(2).【解析】(1)由,可得,结合,得,,则,;(2),,,分三种情况讨论,时,时,结合二次函数对称轴与单调性,以及对数函数的单调性,可筛选出符合题意的正实数的取值范围.试题解析:(1)设,则,因为,因为,得,,则,.(2)由题可知,,.当时,,在上单调递减,且,单调递增,且,此时两个图象仅有一个交点.当时,,在上单调递减,在上单调递增,因为两个图象仅有一个交点,结合图象可知,得.综上,正实数的取值范围是.18、(1)偶函数;(2);(3).【解析】(1)先求得函数的定义域为R,再由,可判断函数是奇偶性;(2)由,所以,以及对数函数的单调性可得函数的值域;(3)对任意,恒成立,等价于,分,和,分别求得函数的最值,可求得实数的取值范围.【详解】(1)因为且,所以其定义域为R,又,所以函数是偶函数;(2)当时,,因为,所以,所以函数的值域为;(3)对任意,恒成立,等价于,当,因为,所以,所以,解得,当,因为,所以,所以函数无最小值,所以此时实数不存在,综上得:实数的取值范围为.【点睛】方法点睛:不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立19、⑴见解析;⑵;⑶见解析.【解析】(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑵已知,则对于恒成立,即恒成立;所以,从而解得.⑶设,则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解20、(1)(2)【解析】(1)利用可求时的解析式,当时,利用奇偶性可求得时的的解析式,由此可得结果;(2)作出图象,将问题转化为与有个交点,数形结合可得结果.【小问1详解】由图象知:,即,解得:,当时,;当时,,,为上的偶函数,当时,;综上所述:;【小问2详解】为偶函数,图象关于轴对称,可得图象如下图所示,有个不相等的实数根,等价于与有个不同的交点,由图象可知:,即实数的取值范围为.21、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以22、(1)77(2)【解析】(1)由已知可得甲、乙两组学生的人数分别为12、8,求得总分进而可得平均成绩.(2)方法一:由变形得,设甲组
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园林建设实施协议
- 2025年发电机采购合同范文
- 2025年元朝皇家园林维护合同模板
- 2025年公交系统优化采购协议
- 2025年法律顾问风险代理费用协议书模板
- 2025年办公室区域装修合同模板
- 2025年稻草订购合同样本
- 2025年车辆租赁合同补充协议
- 2025版自愿放弃共有资产的离婚协议书范本
- 2025年度员工培训策划费用协作协议
- 2025届浙江省高三历史选考总复习模拟测试(八)历史试题(含答案)
- 二零二五年度港口码头安全承包服务协议4篇
- 广州2025年第一次广东广州市白云区政务服务和数据管理局政府雇员招聘笔试历年参考题库附带答案详解
- 2025年四川中烟工业有限责任公司招聘笔试参考题库含答案解析
- 【市质检】泉州市2025届高中毕业班质量监测(二) 生物试卷(含答案解析)
- 六年级2025寒假特色作业
- DCS-应急预案演练方案
- 2025年江苏辖区农村商业银行招聘笔试参考题库含答案解析
- 2025年中华财险湖南分公司招聘笔试参考题库含答案解析
- 人教版六年级数学下册完整版教案及反思
- 少儿财商教育讲座课件
评论
0/150
提交评论